
A Comparison of R-tree Variants for PCM
Non-volatile Memory

Elkhan Jabarov, Myong-Soon Park
College of Information and Communications

Korea University
Email: {ejabarov, myongsp}@korea.ac.kr

Byung-Won On
Department of Statistics and Computer Science

Kunsan National University
Email: bwon@kunsan.ac.kr

Abstract—Phase Change Memory (PCM) is a byte-addressable
type of non-volatile memory. Compared to other volatile and
non-volatile memories, PCM is 2∼4 times denser than DRAM
and much better in read latency than NAND Flash memory.
Although the write endurance of PCM is 10 times better than
NAND Flash memory, it is still limited to 106 times per PCM
cell. Thus the write endurance of PCM should be improved in
order PCM to be used as an efficient main or storage memory.
In this paper, we comparatively study three different types of
existing R-tree variants (i.e., R-trees, R+-trees, and R*-trees) to
be used in PCM, and then attempt to understand how R-tree
variants cause the write endurance problem of PCM. We also
look at which one is heavily affected, compared to the others.
To evenly distribute write operations over the entire memory, we
would like to find which one we have to re-design and important
clues to be considered when we modify some R-tree algorithms.
To the best of our knowledge, this is the first work that shows
how R-tree variants work in PCM.

I. I NTRODUCTION

These days Hard Disk Drives (HDDs) have been quickly
replaced by non-volatile memories such as NAND Flash
memory because there is no loss of data in such non-volatile
memories in case of a blackout. In addition, because the non-
volatile memories are electronic devices, the read and write
latency times are much faster than those in HDDs. Recently
Samsung and Micron Technology have developed a prototype
of PCM that is non-volatile byte-addressable memory, 2∼4
times denser than DRAM, and orders of magnitude better than
NAND Flash memory in write endurance [1]. Especially, it is
known that the existing PCM prototypes are able to conduct
106 write operations at maximum for each memory cell. This
is ten times better than that in NAND Flash memory. For
details, please take a look at Table I indicating parameters
– minimum access unit, read and write latency times, and
endurance for DRAM, NAND Flash memory, PCM, and HDD.
It is obvious that all the parameters of PCM are better than
NAND Flash memory and HDD except that the endurance of
HDD is non-limited. Moreover, the main drawback of NAND
Flash memory is that the minimum access unit is pages,
meaning that for updating only one byte we need to rewrite all
the page. However, PCM do not have the limitation that each
read (or write) operation should be executed on a page (i.e.,
2 or 4 KB). In addition, NAND Flash memory has the erase-
before-write limitation which means that an erase operation
should be performed on a memory area before data is written

Parameteres DRAM NAND Flash PCM HDD
Volatile O X X X
Minimum Access Unit Byte Page Byte Sector
Read Latency 1.25 ns 25 µs 1.25 ns 12.7 ms
Write Latency 1.25 ns 200 µs 15.6 ns 12.7 ms
Endurance ∞ 105 106 ∞

TABLE I
PARAMETERS OFDRAM, PCM, NAND FLASH MEMORY, AND HDD

into that area. This erase operation needs about 2ms and is
a major performance bottleneck. However, among advanced
non-volatile memories, PCM has no erase operation so data
can be written in a certain cell without erase operation. In
addition, since PCM is byte-addressable, it can update only
a few bytes for a new write operation. Compared to NAND
Flash memory, PCM outperforms NAND Flash memory in the
aspect of both performance and endurance. Thus PCM is likely
to be used rather than NAND Flash memory in near future.
However, the main issue of PCM is still write endurance
problem. In other words, a memory cell can no longer be
used if more than106 write operations are performed in the
memory cell. To avoid this endurance problem in PCM, we
need to re-design existing algorithms such as B+-trees or R-
trees so that the proposed new algorithms will distribute write
operations evenly over memory cells.

To reduce the number of write operations in particular mem-
ory cells, Chen et al. proposed a B+-tree indexing algorithm
which is used in commercial database management systems
such as Oracle and IBM-DB2. In the work, the authors note
that the number of write operations can increase in B+-tree
algorithm when a new record is inserted to a node and the
records are sorted in the node for fast search. To minimize
the number of write operations in B+-tree algorithm, they
consider that leaf nodes are not sorted, while internal nodes are
sorted. As a result, their approach might significantly reduce
the number of write operations in leaf nodes, while the number
of write operations does not decrease in internal nodes. In
the similar context, we also need to re-design the existing
R-tree algorithm which fits to PCM. This is, the modified R-
tree algorithm is required to distribute write operations evenly
over the entire PCM cells. In general, R-trees are tree data
structures to index spatial objects such as restaurant locations



(a) per cell in R-trees (b) per node in R-trees (c) per cell in R+-trees

(d) per node in R+-trees (e) per cell in R*-trees (f) per node in R*-trees

Fig. 1. Number of write operations in inserting 5 million objects. We also observed similar results in the other data sets. Due to space limitation, we will
omit the other results.

in order to quickly answer to queries such as “retrieve all
Italian restaurants within 1 km of my current location.”

In this paper, we focus mainly on R-tree variants in PCM.
We apply three different types of existing R-tree variants
such as R-trees, R+-trees, and R*-trees to PCM, and then
understand how explicitly R-tree variants cause the write
endurance problem of PCM. In addition, we will have a look
at which one is heavily affected, compared to the others.
To reduce the number of write operations in particular cells,
we would like to find which one we have to re-design and
important clues to be considered when we modify some R-
tree algorithms. To the best of our knowledge, this is the first
work that shows how R-tree variants work in PCM.

II. R-TREE VARIANTS

R-tree algorithm represents nearby objects with their min-
imum bounding rectangle (MBR) that describes a leaf or
internal node in the tree. The R-trees are balanced search trees
so that all leaf nodes are at the same height. Except for the
root node, each node is guaranteed to contain a minimum fill.
If an object is inserted to a leaf node and then the node is
full, the node should be split. This process will be continually
made in higher levels of the tree. On the other hand, when an
object is deleted in the leaf node, where the number of entries
is less than the minimum fill, the leaf node should be merged
into another node. To search an object, R-trees make use of the
bounding boxes to determine whether or not to search inside
a subtree. In this way, most of nodes in the tree are never read
during a search. R+-trees and R*-trees are variants of R-trees.
Unlike R-trees, R+-trees avoid overlapping of internal nodes
by inserting an object into multiple leaves. The R*-trees use a
combination of a revised node split algorithm and the concept
of forced reinsertion at node overflow. This is based on the
observation that R-tree structures are highly susceptible to the

order in which their entries are inserted, so an insertion-built
structure is likely to be sub-optimal [2].

III. E XPERIMENTAL RESULTS AND CONCLUDING

REMARKS

We first implemented R-trees, R+-trees, and R*-trees, using
Java, and run all the experiments on a single computer with
2.4 GHz Intel Core i5 processor and 8GB 1600 MHz DDR3
memory. Then, we randomly generated five data sets including
1 million, 2.5 million, 5 million, 7.5 million, and 10 million
objects. In addition, we set 512 to the maximum fill factor.
Finally, we insert the objects to each R-trees and variants.

As illustrated in Figure 1, R-trees outperform their variants
for PCM by taking in account the number of writes per cell
and node, while R+-trees are similar to R*-trees. The number
of the cells being used is quite similar to other R-tree variants.
However, the number of nodes that are being used are much
higher than other R-tree variants, meaning that many of the
nodes are not full. This due to the reason that the R+-trees
do not have minimum fill factor requirement. Furthermore,
because of the many split operations, as the R+-trees do not
allow internal nodes to overlap, increasing the number of
nodes being used. The figure (x,y) depicts the number of writes
per node and per cell in R+-trees. It is easily seen that some
nodes and cell have more number of writes than the others.
It is clear that R+-trees split nodes more often than any other
R-tree variants that cause the increase in number of writes per
node and cell of certain nodes.

REFERENCES

[1] S. Chen, P. Gibbons, and S. Nath, “Rethinking database
algorithms for Phase Change Memory”, In 5th Conference on
Innovative Data Systems Research (CIDR), USA, 2011

[2] Y. Manolopoulos, A. Nanopoulos, A. Papadopoulos, and
Y. Theodoridis, “R-trees: Theory and applications”, In Database
Management and Information Retrieval, Springer, 2006


