
362	 Journal of Digital Information Management   Volume 8 Number 6   December 2010

Journal of Digital
Information Management

Abstract: During web search, confusion can happen due
to homonym when users use non-unique values as a search
term of an entity. Especially, when parts of names of an entity
were used as its identifier, we call a mixed entity resolution
problem whose goal is to clear out the erroneous entities. For
example, if only last name is used as an identifier, we cannot
distinguish “Vannessa Bush” from “George Bush.” Mixed entity
resolution problem is common among Web pages data. In this
paper, to resolve aforementioned mixed entities on the Web,
we propose a prototypical system which includes a web service
based interface, unsupervised clustering scheme, and cluster
ranking algorithms. In particular, since the correct number of
clusters is often unknown, we study a state-of-the-art unsu-
pervised clustering solution based on propagation of pairwise
similarities of entities. Experimental results show that our ap-
proach outperforms main competing solution.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]; Clustering: H.5.3
[Group and Organization Interfaces] ; Web-based interaction

General Terms: Data mining, Web search, web services, Web page
clustering

Keywords: Mixed Entity Resolution, Unsupervised Clustering

Received: 4 April 2010; Revised 19 May 2010; Accepted 3 July 2010

1. Introduction

According to recent U.S. Census Bureau reports, about 30%
queries include person names. However, considering 100
million persons share only about 90,000 person names, a
search result is a mixture of web pages of different people with
the same name spellings. In general, this problem is known
as Mixed Entity Resolution Problem for named entity search
tasks on the Web (D. Lee, 2005). To demonstrate the need for
a solution to mixed entities, let us present a real case drawn
from Google, shown in Figure 1. In the search result, there
exist a mixture of web pages of a professor at CMU, an actor,
a hockey player, a historian, a Jazz guitarist, etc. who have the
same name spellings of Tom Mitchell. There are 37 different
Tom Mitchells among top 100 ranked web pages as illustrated
in Table 1. Furthermore, mixed entities commonly occur on
the Web when we are searching information about a product
by name. For instance, if a user searches for a product name
such as Oracle, user also finds different web pages of Oracle
Database, Oracle Audio, Oracle Academy, and so forth.

In this case, unlike traditional search engines, we focus on
developing an effective system that identifies mixed entities
such as person or product names as a query on the Web, and

then displays its query result containing ranked groups, each
of which contains URL links and corresponds to each different
entity with the same description.

However, it is non-trivial to resolve mixed entities due to the
following four challenges. First, since the number of clusters
within top-k ranked web pages is not given a priori, we cannot
take advantage of supervised clustering schemes such as
K-means and K-spectral clustering. Second, skewed cluster
sizes make it difficult to group web pages correctly. Next, the
running time of clustering web pages should be instantaneous
that users do not feel bored waiting search results for a long
time. Finally, a set of clusters is required to be re-ranked. For
instance, take a look at the name data set of Tom Mitchell in
Table 1, where we observed that 92 top ranked web pages
are grouped to 37 clusters of CMU professor, hockey player,
historian, and so on. In the next step, the 37 clusters should be
ranked in a certain order. In other words, the CMU professor
cluster should be first ranked, and then the historian cluster is
ranked, and so on. To cope with these challenges, we develop
an effective framework for resolving mixed entities on the Web.
In this paper, we propose a web service based interface, an
unsupervised clustering, and several cluster ranking schemes.
The system outline is shown in Figure 2. In particular, we
devise an unsupervised clustering technique using similarity
propagation.

The rest of this paper is organized as follows. We formally
define mixed entity resolution problem. Then, we introduce an
overview of our framework followed by discussion of our main
ideas. Preliminary experimental results with name data sets
are described next. Finally, some discussion and conclusion
follow at the end.

Framework For Mixed Entity Resolving System Using Unsupervised Clustering

Byung-Won On1, Ingyu Lee2

1Singapore Management University
Singapore
2Troy University
AL. USA

Figure 1. Google search results showing that the ranked links of
web pages associated with the search term of “Tom Mitchell”

	 Journal of Digital Information Management   Volume 8 Number 6   December 2010	 363

2. Mixed Entity Resolution

As proof-of-concept, let us show two common, possible
motivated examples as follows:

Example 1. An applicant A is applying for a job opening in a
company. The search committee members in the company
would like to understand A more than his resume. Thus they
search for him in Google. When they query A’s name spellings
in Google, it retrieves the web pages related to A. Unfortunately,
there exist a number of web pages of different As with the same
name spellings. In addition, since A is not celebrity, his web
pages are located far away from top ranked web pages in the
search results. If we suppose that each result page of Google
contains 10 links of web pages and the links related to A’s actual
web pages are ranked between 90th and 100th positions, the
committee members need to visit ten result pages to find A’s
actual web pages.

Example 2. People often miss their class mates in high schools
after their graduation. Indeed, to locate their friends, they at-
tempt to search in Google using a query of their friends’ name
spellings. For instance, suppose that a friend name is “John
Smith”’ which is a common name in the country. Google would
show us a mixture of web pages related to different “John
Smith”s. Let us assume there are two John Smiths, where one is
a carpenter and the other is a high school teacher. The number
of web pages related to the school teacher is 98 and the web
pages are located from the second position to the 99th position
in 100 top ranked web pages retrieved from Google. On the
other hand, the carpenter has 2 web pages and the web pages
are ranked in the first position and the 100th position.

Formally, mixed entity resolution problem is defined as
follows1:

Clustering is the key part for resolving mixed entities. Conse-
quently, we view the problem as an unsupervised clustering
problem. We conjectured that the majority of input pages map
to a single individual, although there are a few cases that are
assigned to multiple individuals sharing the same name. Hence,
we view the problem as a hard clustering which assigning input
pages to exactly one individual cluster so that the produced
clusters are not overlapped.

Hard clustering algorithms can be classified as either a parti-
tioning or a hierarchical clustering. Hierarchical agglomerative
clustering approach generates a series of nested clusters by
merging simple clusters into larger ones, while partitive methods
try to find a pre-specified number of clusters that best capture
the data. For instance, a prior knowledge of the probable num-
ber of clusters must be required in K-means and K-way spectral
clustering algorithms.

Since the correct number of clusters is not known a priori in our
problem, Hierarchical Agglomerative Clustering (HAC) algo-
rithms, rather than partitive clustering methods, are employed
as a solution to our problem. However, hierarchical clustering
methods are not able to reallocate entities which are plausible
to be poorly classified in the early stages of text analysis. In

this paper, we study an unsupervised clustering method that
is more accurate than HAC algorithms.

3. Main Proposal

Figure 2 illustrates the overall architecture of our system. To
search for a product name (e.g., Oracle), we use Google web
service framework in which Google web service server provides
us with a list of top-k ranked web pages which are associated
with the product name. Then, we tokenize top-k ranked web
pages and each web page is represented as a vector using
TF/IDF weighting scheme and the similarity of each pair of
vectors are computed by TF/IDF cosine similarity measure.
Subsequently, the vectors are grouped into a set of clusters
in terms of our similarity propagation based unsupervised
clustering method. Finally, K clusters are ranked by one of our
cluster ranking algorithms followed by the search result.

3.1 Web Service Based Interface
As shown in Figure 2, our web service client to Google (Google
Web APIs) uses a keyword search in the Google search engine.
Since the Google web service supports Simple Object Access
Protocol (SOAP), which is a technology to allow for Remote
Procedure Call (RPC) over the web, the client program creates
a SOAP request message that contains a person name entered
by a user, and then sends it to the Google’s web service server.
After the client receives a SOAP response message from the
server, it parses the SOAP response, and then extracts the
top-k links. According to the recent study (B. Jansen, 2003),
the majority of people only tend to look into the first returned
page (i.e., 10 links) of Google. Thus, we focus on at most k=100
links which would be the URLs of web pages that contain the
keyword.

3.2 Similarity Measure

Web pages corresponding to top-k links are downloaded in our
system. Let ep, ti, and T be p-th web page, the i-th term in ep, and
the total number of distinct terms in the top-k web pages, re-
spectively. wti

is the weight value which is associated with the
pair (ti,ep), and further document vector vep = (wt1 , wt2 , ...,wtT ).

First, to weight each term ti in ep, 









×=

il

i
tlt

i
t N

N
tF

tFw log
)(max

)(, where

F(ti) is the raw frequency of term ti in ep; N is the total number of
documents in the system; and Nti is the number of documents
in which term ti appears. Then, the similarity between vep and veq

is estimated as
∑∑

∑
==

=

×

×
=

×

⋅
=

T

i et
T

i et

T

t etet

ee

ee
ee

qipi

qipi

qp

qp

qp

ww

ww

vv

vv
vvsim

1
2

,1
2

,

1 ,,),(.

Given a set of mixed entities E={e1,…,ep,…,eq,…,eN} with the
same name description d, group E into K disjoint clusters
C={c1,…,cK} such that entities {ei

p ,…,ei
q} within each cluster

ci belongs to the same group.

1In our work, E is a collection of web pages and ep stands for p-th web page
and d denotes person or product name.

Figure 2. System Architecture

364	 Journal of Digital Information Management   Volume 8 Number 6   December 2010

3.3 Approximating Number of Clusters
Based on our similarity scheme, top-k web pages can be
represented as a graph G, where p-th web page denotes node
ep, and the edge weight between nodes ep and eq is the TF/
IDF cosine similarity between ep and eq. In next step, we need
an unsupervised clustering method to gather similar entities
together. Since the unsupervised clustering generally shows poor
performance, we devised an algorithm estimating the number of
clusters shown in Figure 3. The main idea for this algorithm is to
gradually disconnect several edges based on the connectivity
between nodes and analyze the patterns of segmented subgraph
sequences. Assume Nmi and Nmi+1 are number of subgraphs with
µi and µi+1, respectively. Then, we assumed that the number of
clusters are assumed to be near when the difference between
Nmi and Nmi+1 is drastically changed. We observed three different
types of graph segment sequences with an incremental threshold
value µ such as gradually increasing, gradually decreasing, and
staying approximately as a constant.

In the gradually increasing sequence (convex form), the se-
quence reaches the maximum difference when the difference
starts to decrease. For the gradually decreasing sequence
(concave form), the sequence reaches the minimum differ-
ence when the difference starts to increase. Based on this, our
algorithm assumes that the number of cluster will be close to
the maximum difference in the number of subgraph sequences
when it shows concave form, the minimum difference when it
shows convex form, and the average of these two when it stays
approximately as a constant (linear form).

3.4 Similarity Propagation
We approximate the number of clusters (K) of the given input
data. Then, we are able to apply K-centers clustering method.
However, the disadvantage of the K-centers clustering method
is that the clustering results is affected by the initial selection
of centroids at random. In case of incorrect selection of K
centroids, it would have poor clustering results. To improve
the weak point of the K-centers method, we consider all nodes
as potential centroids. Furthermore, we propagate pair-wise
similarities along links of a graph G until K good centroids
emerge.

The similarity sim (vep ,veq ) stands for how well vep is suited
to be the centroid vector for vep , defined as sim (vep , veq ) =
-| vep-veq |. To determine which vectors are centroids and which
centroid each vector belongs to, two kinds of messages are

exchanged between vectors. One is Responsibility R (vep , veq)
and the other one is Availability A (vep , veq). More specifically,
R (vep , veq) indicates how well suited veq is to work as centroid for
vep considering other centroids for vep. R (vep , veq) is sent from vep
to veq. In contrast, A (vep , veq) reflects how appropriate it would be
for vep to choose veq as its centroid vector, sending from centroid
veq to vep. Initially, A (vep , veq) = 0. The responsibilities are computed
b y { }),(),(max),(),(''

' qpqp
qeqe

qpqp eeee
vv

eeee vvsimvvAvvsimvvR +−=
≠

The availability updates to see if each candidate cen-
troid vector would make a good centroid defined as

{ }
{ } 











+= ∑
∈ qepepe

qpqqqp
vvv

eeeeee vvRvvRvvA
,

'

'

),(,0max),(,0min),(The

self-availability A (vep ,veq) is updated differently in terms of

{ }
'

'(,) max 0, (,)
q q p q

e ep q

e e e e
v v

A v v R v v
≠

= ∑ . This self- avail-

ability indicates that veq is a centroid, based on the positive
responsibilities sent to candidate centroid veq from other vectors.
Using the above functions, messages are exchanged between
vectors until a high quality set of centroids and corresponding
clusters gradually converges. In other words, for vector vep , the
value of veq maximizing A (vep , veq) + R (vep , veq) identifies the vec-
tor that is the centroid for or the vector itself as the centroid.
The time complexity of the similarity propagation is O(i × K ×
N), where i, K, and N are the number of iterations, centroid vec-
tors, and entity vectors, respectively. Details of the method are
described in (Frey, 2007).

3.5 Cluster Ranking Algorithms
As the result of our clustering method using similarity
propagation, relevant web pages are clustered to the same
group. For instance, suppose there are four different individual
persons with the same name spellings, shown in Table 1. In
the example, the total number of web pages related to “Tom
Mitchell” is 13, where four web pages (i.e., e1, e2, e3, and e4),
three ones (i.e., e5, e6, and e7), five ones (i.e., e8, e9, e10, e11, and
e12), and one web page (e13) are associated with professor at
CMU, reporter at CNN, musician at Shady record company, and
minister at Kansas city, respectively. Let us assume that web
pages are ranked by PageRank scores like the third column
in Table 1. The ranking order of web pages in terms of Google
PageRank is e1, e5, e10, e6, e7, e9, e8, e4, e12, e2, e11, e3, and e13.

Cluster Label Web Page ID Google PageRank

Tom Mitchell
Professor CMU

e1

e2

e3

e4

1
10
12
8

Tom Mitchell
Reporter CNN

e5

e6

e7

2
4
5

Tom Mitchell
Musician Shady Records

e8

e9

e10

e11

e12

7
6
3
11
9

Tom Mitchell
Minister Kansas City

e13 13

Table 1. An example of ranking clusters

These 13 web pages are clustered to four groups in terms of our
clustering scheme, and furthermore we need to re-arrange the

Figure 3. Approximation of Cluster Numbers

Input: Graph G
Output: # of clusters

For {m = 0.01;m ≤ 1: m = m+0.01}
Generate a subgraph Gi by removing
links s.t. their link weights ≤ m
numClusi = # of disconnected graph segments Gi
E=(m, numClusi)

End For
Based on the E sequences, classifies as
Type I (concave), Type II (convex), Type III (linear)
Find the maximum and minimum difference between

numClusi and numClusi+1 in E
If graph segments {Gi} are in Type I

Return maximum difference numClusi as cluster #
Elself graph segments {Gi} are in Type II

Return minimum difference nimClusi+1 as cluster #
Else graph segments {Gi} are in Type III

Return average of maximum and minimum difference

	 Journal of Digital Information Management   Volume 8 Number 6   December 2010	 365

four groups in a certain order (like PageRank). Let us denote
this process as ranking clusters.

This is a considerably challenging issue in this paper. For
instance, note the four web pages of “Tom Mitchell” at CMU.
e1 is firstly ranked by Google PageRank algorithm, while the
rest pages are mostly located in bottom -- e2 (10-th), e3 (12-th),
and e4 (8-th). In this case, it is hard to determine which position
the cluster (labeled as CMU/Prof) should be ranked in among
the four clusters (labeled as CMU/Prof, CNN/Rep, Shaddy/
Mus, and Kansas/Min). To address this problem, we propose
an approach based on the hypothesis that re-using ranking
information generated by Google is sufficiently effective when
we attempt to rank a set of clusters. For this, we consider three
different methods as follows:

Consider the •	 relative ranking positions of web pages per

cluster which is defined as
j

j

cluster

clusteri i

j N

NPageRank
kClusterRan

∑∈=
/

where Clusterj is the number of pages in cluster j and N is the
total number of pages. For example, take a look at the cluster,
named as ”CMU/Prof”. We can compute the cluster ranking
by ClusterRank(CMU/Prof) = 0.6. Finally, the clusters are re-
ordered by the ClusterRank scores in the ascending order.

Consider the •	 highest ranking position of web pages per cluster

which is defined as i
Clusteri

j PageRankkClusterRan
j

min
∈

= . For in-

stance, the cluster of “CMU/Prof” is ranked in the first position due
to the ranking position of e1. In other words, ClusterRank(CMU/
Prof) = 1. Finally, the clusters are re-ordered by the ClusterRank
scores in the ascending order.

Consider the •	 median ranking position of web pages per cluster

which is defined as }{ jj ClustermediankClusterRan = As an ex-

ample, ClusterRank(Shaby/Mus) = 7 due to PageRank(e10) = 3,
PageRank(e9) = 6, PageRank(e8) = 7}, PageRank(e12) = 9, and
PageRank(e11) = 10. Finally, the clusters are re-ordered by the
ClusterRank scores in the ascending order.

Considering that our ranking algorithms compute the ranks of
clusters based on document ranks by Google PageRank, the
result lists of our ranking algorithms would be analogous to
Google’s standard output. However, we expect that the result
lists of our ranking algorithms would provide users with better
presentation. For instance, please see Tom Mitchell at CMU
in Table 1, in which e1, e2, e3, and e4 pertaining to the CMU
professor are ranked in 1-st, 10-th, 12th, and 8-th. In general,
Google standard output is a set of pages containing top-10
documents. Thus users are able to see three documents in the
first result page, and the other page in the second result page.
On the other hand, in terms of our relative ranking algorithm,
e1, e2, e3, and e4 are ranked in 5-th, 7-th, 8th, and 6-th, and
all the documents appear in the first result page containing
top-10 documents. In the end, users are able to search for all
documents (related to Tom Mitchell at CMU) once.

4. Experimental Results

We used Google APIs (Google Web APIs) to implement Google
web service client and server programs. We also measure
similarities of documents using TF/IDF cosine similarity of
SecondString (SecondString: Open source Java-based package
of Approximate String-Matching). For the similarity propagation
based clustering method, we used the C-programming code
of (Frey, 2007) in public. All experimentations were done on 4
× 2.6 Ghz Opteron processors with 32GB of RAM.

4.1 Testing Environment
Data sets. For validation, we have used two data sets from
real examples on the Web. The person name is a test case
using the 1,085 web pages that (Bekkerman, 2004) used. In
2004, Bekkerman extracted 12 personal names from Melinda
Gervasio’s email directory. Then, 100 top-ranked web pages
of each name were retrieved from Google, and cleaned and
manually labeled by authors. The resulting data set consists
of 1,085 web pages, 187 different persons, and 420 relevant
pages. Table 2 shows the statistics of the data set. For instance,
when “Tom Mitchell” is issued as a query to Google, 92 web
pages are retrieved. Among these 92, there are 37 namesakes
to “Tom Mitchell.” For example, among 92 web pages,
“Tom Mitchell” appears as musicians, executive managers,
astrologist, hacker, and rabbi -- 32 different kinds. That is, a
set of 32 individual persons are mixed since they all have the
same name description of “Tom Mitchell”. Similarly, the product
name is the other test case as illustrated in Table 2.

Keyword Type Name N K

Person Adam Cheyer
William Cohen

Steve Hardt
David Israel

Leslie Pack Kaelbling
Bill Mark

Andrew McCallum
Tom Mitchell

David Mulford
Andrew Ng

Fernando Pereira
Lynn Voss

97
88
81
92
89
94
94
92
94
87
88
89

2
10
6
19
2
8
16
37
13
29
19
26

Product Oracle
Sun

Trojan

25
25
25

8
14
9

Table 2. Characteristics of name data set (N: # of top-k pages and
K: # of clusters as true solution)

Generate Similarity Graph. To create a terminology docu-
ment matrix A, we used TMG (D. Zeimpekis, 2006) software
package with spamming, and dropped common words using
dictionary, and applied normalization. Each Aij element indi-
cates the term frequency (TF) multiplied by inverse document
frequency (IDF) of terminology ti in the document dj as in Aij =
TFij × IDFij. Then, we generate document-document matrix G
by multiplying document term matrix, AT, with term document
matrix, A, as in G = AT × A. The G(i,j) element in the matrix
indicates the similarity value of two documents di and dj. Gij
element holds sum of multiplications of dik and djk values for

each terminology tk as in ∑ ×=×= jkik
T ddjiAAG),(as

described in (M. Berry M. B., 2005).

Evaluation Metrics. To evaluate competitive clustering meth-
ods, we use rand index RI (Rand, 1971). Given a set of N enti-
ties and two clusters X and Y, RI = (a+b)/(a+b+c+d), where a :
number of pairs of elements that are in the same set in X and
Y; b : number of pairs of elements that are in different sets in
X and Y; c : number of pairs of elements that are in the same
set in X and in different sets in Y; and d : number of pairs of
elements that are in different sets in X and in the same set in
Y. If RI is closed to 1, the two partitions X and Y are the same.
For instance, suppose that X is the predefined cluster sets
and Y is the cluster sets reported by either HAC algorithms
or our similarity propagation based clustering technique. Let
X = {(1,2,3),(4,5,6)} and Y = {(1,2),(3,4,5,6)}. Then, a = {(1,2),

366	 Journal of Digital Information Management   Volume 8 Number 6   December 2010

(4,5), (4,6), (5,6)} = 4. b = {(1,4), (1,5), (1,6), (2,4), (2,5), (2,6)} =
6. c = {(1,3), (2,3)} = 2. d = {(3,4),(3,5),(3,6)}=3. Thus, R = (4+6) /
(4+6+2+3) = 0.67. Another metric we are using to measure the
performance is relative error which is defined as the difference
between the actual and predicted number of clusters divided
by the actual number of clusters. For example, if the algorithm
generates 4 clusters but the true solution is 5, then the relative
error is 0.2. The relative error shows how close the clustering
results to the true solutions.

5. Results

Correctness. Table 3 shows the experimental results of two
algorithms on our name data sets. For the hierarchical clustering
algorithm, we manually try several different cut off values and
choose the best results. However, hierarchical clustering shows
wide margin of errors in predicting the number of clusters with
our name data set. Similarity propagation with our cluster
predicting heuristic described in the previous section shows
almost ten times better result in terms of relative error. In
addition, hierarchical clustering requires pairwise distances
to build up the linkage tree which requires O(n3) number of
computations and also needs O(n2/2) amount of memory space
to store the linkage data where n is the number of documents.
On the other hands, similarity propagation based on sparse
matrix requires only O(nnz2) computations and O(nnz) memory
space where nnz is number of related document pairs.2

As a conventional method to measure the quality of clustering
results, we used rand index as described in the previous section.
The experimental results show that our similarity propagation
clustering shows 4% better performance than hierarchical
clustering algorithm. Considering the rand index becomes much
smaller if the number of clusters is increasing, the 4% perfor-
mance difference between two algorithms is significant. These
two algorithms show the similar difference in other methods
such as f-measure and jaccard index.

Cluster Ranking. Figure 4 illustrates the screen-shot of our
three ranking algorithms. To search for Trojan in our system,
we choose top-25 ranked web pages from Google. According

to our manual inspection, there exist nine clusters. In other
words, there is a mixture of nine distinct Trojan web pages
in Google -- Trojancondoms.com, Los Angeles Times, Trojan
horse, Daily Trojan, University of Southern California Trojans
Official Athletic Site, Trojan Minor Planets (http://www.harvard.
edu), Trojan Battery Company, Troy University Trojans Athletics
Official Site (TroyTrojans.com), and Trojan Women by Euripides
(http://classics.mit.edu). Furthermore, we can summarize the
web pages with regard to Trojan which are condoms, university
athletic sites, computer virus protecting software, ancient stories
related to Troy Trojan, blogs, and so on.

According to Google PageRank, Trojancondoms.com and Los
Angeles Times are top-3 web pages. As shown in Figure 4,
such top-3 web pages are located in the same ranking posi-
tions as Google PageRank in both median and relative ranking
algorithms. In particular, median ranking algorithm is consider-
ably similar to relative ranking algorithm, while both are slightly
different from highest ranking algorithm. Since highest ranking
algorithm ranks a cluster ci in terms of only one web page with
the highest ranking position among the other web pages within
ci, the ranking positions of clusters are more variants than the
other ranking algorithms. As shown in Figure 4, Trojancondoms.
com is one cluster which comprises web pages associated
with condoms, and Trojan Battery Company is another cluster
which includes a set of web pages regarding computer virus
protecting software. By and large, 25 web pages are correctly
grouped to a set of clusters.

6. Related Works

Bekkerman et. al. proposed two algorithms to disambiguate
web appearances of people in a social network in their paper
(R. Bekkerman, 2005). One is based on link structure of web
pages and another is using multi-way distributional clustering
method. Their algorithms show improvement in the aspect
of accuracy. Minkov et. al. used lazy graph walk algorithm
to disambiguate names in email documents in their paper
(E. Minkov, 2006). The authors provided a framework for
email data, where content, social networks and a timeline to
integrated in a structured graph. Banerjee et. al. proposed
multi-way clustering on relation graphs in (A. Banerjee, 2007).
Different types of entities are simultaneously clustered based
not only on their intrinsic attribute values but also on multiple

Name Solution
Cluster

Similarity Propagation Hierarchical Clustering

Cluster # Relative Error Rand Index Cluster # Relative Error Rand Index

Adam Cheyer
William Cohen

Steve Hardt
David Israel

Leslie Kaebling
Bill Mark

Andrew McCallum
Tom Mitchell

David Mulford
Andrew Ng

Fernando Pereira
Lynn Voss

Sun
Oracle
Trojan

2
10
6
19
2
8
16
37
13
31
19
26
14
8
9

9
6
9
12
2
7
12
27
31
37
15
26
9
5
4

3.50
0.40
0.50
0.37
0.00
0.13
0.25
0.27
1.38
0.19
0.21
0.00
0.36
0.38
0.56

0.17
0.46
0.43
0.70
0.50
0.64
0.67
0.88
0.65
0.82
0.74
0.82
0.90
0.61
0.80

39
59
45
50
59
58
67
66
52
24
33
40
12
8
6

18.5
4.90
6.50
1.63
28.5
6.25
3.19
0.78
3.00
0.23
0.74
0.54
0.14
0.00
0.33

0.11
0.42
0.41
0.76
0.03
0.60
0.65
0.94
0.65
0.67
-.67
0.86
0.92
0.66
0.76

Table 3. Experimental results. Relative error shows huge difference between two algorithms

2Generally, the number of nonzero elements (nnz) in sparse matrix is way
smaller than n2.

	 Journal of Digital Information Management   Volume 8 Number 6   December 2010	 367

relations between entities. On et al. introduced multi-level graph
partitioning scheme to address the scalable issue of name
disambiguation problem on both bibliographic and information
retrieval domains (B. On, 2007). Lee. et. al. showed algebraic
approach to solve name disambiguation problem using SVD
and NMF in (I. Lee, 2009).

On the other hand, to estimate the number of clusters, a number
of approaches have been proposed. In particular, recent leading
studies are Gap Statistic (R. Tibshirani, 2001) and Clest (S. Du-
doit, 2002). However, such methods have been developed to ad-
dress the problem in which the cluster sizes are well distributed.
In addition, they focus on estimating a small number of clusters
(e.g., at most 2 or 3 clusters). In author awareness, this is the
first paper to provide a systematic approach in solving a mixed
entity resolution problem. In addition, we analyzed the name
disambiguation problem characteristics, proposed an unsuper-
vised clustering algorithm to solve extremely skewed clustering
problem, and proposed a prototypical system. Our experiment
results show some promising in choosing a proper algorithm
based on the problem and computational environments.

7. Conclusion and Future Work

In a nutshell, we formalized the mixed entity problem which
commonly appears on the Web. Then, we developed a practical
system for resolving mixed entities such as person or product
names for name search tasks. For development of such a
system, we introduced web service based interface. In addition,
since a prior knowledge of the probable number of clusters is
unknown, we presented an unsupervised clustering schemes
based on similarity propagation that outperforms the existing
well-known Hierarchical Agglomerative Clustering algorithms.
Finally, we proposed three ranking algorithms for arranging
the resulted clusters in an appropriate order. In practice, our
proposal can be used as name search in Google3

For our future direction, the scalability of the algorithm is an
ongoing problem. Note that we focus on top-k web pages re-
trieved from Google. In this paper, our system correctly group
only top-k web pages to a set of clusters. As the k value is
increased, our clustering schemes suffer from scalable prob-
lem. To address this challenging problem, we are working on
unsupervised clustering methods based on multi-level graph
partitioning approach. In addition, it is infeasible for every clus-
tering method to correctly (perfectly) cluster web pages at all.
To cope with this practical issue, we will apply the concept of
feedback and investigate semi-clustering problem (induced by
users’ feedback) in our future work.

References

[1] Banerjee, S. B. (2007). Multi-way Clustering on Relation
Graphs. SIAM Data Mining.

[2] Al-Sultan, K. (1996). Computational experience on four
algorithms for the hard clustering problem, Pattern Recognition
Letter, 17 (3) 295-308.

[3] Jansen, A. S. (2003). An Analysis of Web Documents
Retrieved and Viewed, In: Int’l Conf. on Internet Computing.
Las Vegas, USA.

[4] On, D. L. (2007). Scalable Name Disambiguation using
Multi-level Graph Partition. SIAM Data Mining.

[5] Bekkerman, R. (n.d.). Name Data Set. Retrieved from http://
www.cs.umass.edu/ronb

[6] Chua, F. (2009). Dimensionality Reduction and Clustering of
Text Documents. Singapore Management University.

[7] Lee, B. O. (2005). Effective and Scalable Solutions for
Mixed and Split Citation Problems in Digital Libraries, In: ACM
SIGMOD Workshop on Information Quality in Information
Systems (IQIS). Baltimore, USA.

[8] Zeimpekis, E. G. (2006). TMG: A MATLAB toolbox for
generating term document matrices from text collections.

[9] Elmacioglu, Y. T. (2007). PSNUS: Web People Name
Disambiguation by Simple Clustering with Rich Features, In:
Int’l Workshop on Semantic Evaluation (SemEval), (p. 268-271).
Prague, Czech Republic.

[10] Minkov, W. C. (2006). Contextual Search and Name
Disambiguation in Email using Graphs. SIGIR.

[11] Frey, B. D. (2007). Clustering by Passing Messages
Between Data Points, Science. 315.

[12] Google Web APIs. (n.d.). Retrieved from http://www.
google.com/apis

[13] Heath, M. (2002). Scientific Computing: An Introductory.
New York: McGraw Hill.

[14] Lee, B. O. (2009). Algebraic Algorithms to Solve Name
Disambiguation Problem. International Conference on Data
Mining. Las Vegas, USA.

[15] Han, M. K. (2001). Spatial clustering methods in data
mining: A survey. Taylor and Francis.

[16] Jain, M. F. (1999). Data clustering: A review, ACM
Computing Surveys, 31.

[17] Jaleel, A. M. (2006). Last-level cache (llc) performance
of data-mining workloads on a cmp{a case study of parallel
bioinformatics workloads. 12th HPCA.

[18] Yeung, W. R. (2001). Principal Component Analysis for
Clustering Gene Expression Data. Bioinformatics, 17(9) 763-774.

(a) Highest Ranking (b) Median Ranking (c) Relative Ranking

Figure 4. Results of three ranking algorithms

3Currently Google provides us with a variety of keyword searching services
-- normal search, advanced search, image search, and so on

368	 Journal of Digital Information Management   Volume 8 Number 6   December 2010

[19] Keyes, D. (2004). Retrieved from Terascale Optimal PDE
Simulations (TOPS) Center: http://tops-scidac.org

[20] Kaufman, P. R. (1990). Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley.

[21] Berry, M. B. (2005). Understanding Search Engines. SIAM
Press.

[22] Berry, S. D. (1995). Using linear algebra for intelligent
information retrieval, SIAM Review, 37. 573-595.

[23] MacQueen, J. (1967). Some methods for classification
and analysis of multivariate observations, In: Fifth Berkeley
Symposium on Mathematical Statistics and Probability.

[24] Slonim, N. F. (2002). Unsupervised Document
Classification using Sequential Information Maximization.
SIGIR.

[25] Baeza-Yates, B. R.-N. (1999). Modern Information
Retrieval. Addison Weseley.

[26] Bekkerman, A. M. (2005). Disambiguating Web Appearances

of People in a Social Network. Int’l Conf. on World Wide Web
(WWW).

[27] Duda, P. H. (1973). Pattern Classification and Scene
Analysis. Wiley and Sons.

[28] Tibshirani, G. W. (2001). Estimating the Number of Clusters in
a Dataset via the Gap Statistic. J. R. Statist. Soc. B, 411-423.

[29] Rand, W. (1971). Objective Criteria for the Evaluation of
Clustering Methods, Journal of American Statistical Association,
66. 846-850.

[30] Dudoit, J. F. (2002). A Prediction-based Resampling Method
for Estimating the Number of Clusters in a Dataset. Genome
Biology, 3(7).

[31] SecondString: Open source Java-based package of
Approximate String-Matching. (n.d.). Retrieved from http://
secondstring.sourceforge.net/

[32] WEPS: Searching information about entities in the web.
(n.d.). Retrieved from http://nlp.uned.es/weps/

