
Comparative Study of Name Disambiguation Problem
using a Scalable Blocking-based Framework

Byung-Won On
Dept. of Computer Science and Engineering

The Pennsylvania State University
University Park, PA 16802

on@cse.psu.edu

Dongwon Lee
School of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802

dongwon@psu.edu

Jaewoo Kang
Dept. of Computer Science

North Carolina State University
Raleigh, NC 27695

kang@csc.ncsu.edu

Prasenjit Mitra
School of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802

pmitra@ist.psu.edu

ABSTRACT
In this paper, we consider the problem of ambiguous author
names in bibliographic citations, and comparatively study
alternative approaches to identify and correct such name
variants (e.g., “Vannevar Bush” and “V. Vush”). Our study
is based on a scalable two-step framework, where step 1 is to
substantially reduce the number of candidates via blocking,
and step 2 is to measure the distance of two names via coau-
thor information. Combining four blocking methods and
seven distance measures on four data sets, we present ex-
tensive experimental results, and identify combinations that
are scalable and effective to disambiguate author names in
citations.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval

General Terms
Algorithms

Keywords
Name Disambiguation, Blocking, Measuring Distances

1. INTRODUCTION
Bibliographic Digital Libraries (DLs), such as DBLP [17],

CiteSeer [18] or e-Print arXiv [2], contain a large number of
citation records. Such DLs have been an important resource
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for academic communities since scholars often try to search
for relevant works from DLs. Researchers also use the ci-
tation records in order to measure the publication’s impact
in the research community. It is thus an important task to
keep the citation records consistent and up-to-date.

However, because of various reasons (e.g., data-entry er-
rors, ambiguous formats, imperfect citation gathering soft-
wares), keeping citations correct and up-to-date proved to
be a challenging task in a large-scale DL. While many prob-
lems exist, in this work, we specifically focus on the problem
of ambiguous author names. That is, citations of the same
scholar appear under different name variants1 due to errors.
Because of this problem, it is difficult to get the complete
list of the publications of some authors.

For instance, imagine a scholar “John Doe” has published
100 articles. However, a DL keeps two separate purported
author names, “John Doe” and “J. D. Doe”, each of which
contains 50 citations. In such a case, users searching for all
the articles of “John Doe” will get only 50 of them. Simi-
larly, any bibliometrical study would underestimate the im-
pact of the author “John Doe”, splitting his share into “John
Doe” and “J. D. Doe” incorrectly. Such a problem of am-
biguous author names exists in many of existing DLs, as
illustrated in the following motivational example.

Example 1 (Motivation). In order to demonstrate the
needs for such name disambiguation algorithms, we show
two real cases drawn from existing digital libraries. Fig-
ure 1 is a screen shot of the ACM Portal, which contains
the list of author names who have ever published an arti-
cle in ACM-affiliated conferences or journals. In particular,
Figure 1 shows names whose last names are either “Ullman”
or “Ullmann”. Note that the name of the renowned com-
puter scientist, “Jeffrey D. Ullman” at Stanford university,
appears as several variants, incorrectly . For instance, “J. D.
Ullman” in the list is in fact the same person as “Jeffrey
D. Ullman”, however they are treated as different scholars.

1In this paper, the name variants refer to the different
spellings of author names that are in fact referring to the
same person.



8 variants 
under “Ullman”
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Figure 1: Author name index in ACM Portal.

The second case is drawn from CiteSeer, where we tried to
locate all citations about a book, “Artificial Intelligence: A
Modern Approach”, by “S. Russell” and “P. Norvig”. As il-
lustrated in Figure 2, currently, CiteSeer returns 23 different
formats of citations of the same book, incorrectly thinking
that they are all different. Part of the problem is caused by
the ambiguous names of the authors. 2

As illustrated in Example 1, the problem of ambiguous
names prevails in the current DLs. Therefore, locating all
name variants of the same author and consolidating their
citations into a single definitive name improves the quality
of DLs substantially. However, this name disambiguation
problem has been exacerbated as the number and volume of
DLs increase, posing significant challenges to the manage-
ment of large-scale DLs. One of the key challenges is to make
the name disambiguation algorithms scalable and resilient in
order to cope with the rapid growth of the DLs while not de-
grading their accuracy. The traditional approaches that rely
on the syntactic similarity of name variants (e.g., measuring
string edit distance between two names) will likely fail to
scale because, as the size of DLs increases, more numbers
of common or similar names will appear in DLs, making
it increasingly difficult to distinguish them using only their
names.

To investigate these problems, in this paper, we introduce
a two-step framework, where many alternative methods can
be used in each step in order to optimize the performance.
In addition, we exploit additional information of coauthor
relations in order to further improve the algorithm’s accu-
racy. We identify the contributions of our work as follows.

1. If all author names have to be compared against each
other in order to find similar names, the resulting algo-
rithm will be quadratic to the total number of author
names in the input. Clearly, this algorithm will not
scale for large DLs. In order to address this problem,
we advocate a scalable two-step name disambiguation
framework. In the first step, the algorithm partitions

Figure 2: Search result in CiteSeer.

all author-name strings into a set of disjoint blocks.
In the second step, the algorithm visits each block and
compare all possible pairs of names within the block in
order to find the name variants. This blocking scheme
has been introduced and successfully applied in other
problem context such as record linkage [8] or iden-
tity uncertainty problems [22]. Through an extensive
experimental validation, we show the blocking-based
pruning methods are very effective for our problem.

2. We consider several alternatives in each step of the
framework (e.g., use sampling in the first step and
TFIDF distance in the second step), and empirically
evaluate the effects of various combinations of such al-
gorithms for various data sets. We conduct an exten-
sive experimental study to validate our claims – four
alternatives in the first step and seven alternatives in
the second step are examined on four different data
domains, a total of 4× 7× 4 = 112 combinations.

3. We examine a set of “unsupervised” distance mea-
sures, in addition to the two “supervised” algorithms
proposed by [11]. Using citations from large real-world
DLs, we show that, some of the unsupervised algo-
rithms (e.g., cosine, TFIDF) show comparable or even
superior accuracy to supervised ones. Since unsuper-
vised algorithms in general do not require large train-
ing sets, they are useful for disambiguating two names
with a small number of coauthors. Furthermore, we
analyze what kind of combinations in steps 1 and 2
result in good scalability/accuracy trade-offs.

2. RELATED WORK
Han et al. [11] proposed two supervised learning-based

approaches for a related but different problem. Their al-
gorithm solves the so called the citation labeling problem –
given a citation, cross out an author name, and using the
remaining citation information, recover the author name via
supervised learning methods. We, on the other hand, solve
the name disambiguation problem – given a collection of au-
thor names with different spellings, identify name variants
for the same person in reality. In this paper, we adopt their
idea of supervised learning methods in the second step of our



framework. The goal of our study is not to compare super-
vised methods against unsupervised ones. Instead, we are
interested in finding combinations of alternatives that give
good scalability/accuracy trade-offs in the two-step frame-
work.

Our problem has similarities with a more general class of
problems, known as various names – record linkage (e.g., [8,
3]), citation matching (e.g., [22, 20]), identity uncertainty
(e.g., [22]), merge-purge (e.g., [12]), object matching (e.g., [5,
25]), duplicate detection (e.g., [23, 1, 21]), approximate string
join (e.g., [10]) etc. String similarity measures used in our
work were proposed by Jaro [14] and Winkler [26]. Bilenko
et al. have studied name matching for information integra-
tion [3] using string-based and token-based methods. Cohen
et al. have also compared the efficacy of string-distance met-
rics, like Jaro-Winkler, for the name matching task [6]. In
DLs, this problem is called citation matching. In the citation
matching domain, [16] experimented with various distance-
based algorithms with a conclusion that word based match-
ing performs well. We have implemented all these methods
in the second step of our algorithm and compared their ef-
ficacy to other methods.

Before we can process citations, we assume that field seg-
mentation and identification has been completed using some
methods like one in [4]. Blocking was first proposed by Kel-
ley et al. [15] in the record linkage literature. Our block-
ing scheme is also similar in flavor to the two-step citation
matching schemes proposed in [13, 20] where initial rough
but fast clustering (or called “Canopy”) is followed by more
exhaustive citation matching step.

3. PROBLEM & SOLUTION OVERVIEW
Problem Definition. We formally define the name dis-
ambiguation problem as follows:

Given two long lists of author names, X and Y ,
for each author name x (∈ X), find a set of au-
thor names, y1, y2, ..., yn (∈ Y ) such that both
x and yi (1 ≤ i ≤ n) are name variants of the
same author.

The baseline approach to solve the problem is to treat each
author name as a “string”, and perform all pair-wise string
distance using some distance function, dist(x, y):

for each name x (∈ X)
for each name y (∈ Y )

if dist(x, y) > φ, x and y are name variants;

Since the baseline approach is prohibitively expensive to
run for large DLs (because of its quadratic time complexity,
O(|X||Y |)), there is a need for more scalable algorithms that
are not dependent on the syntactic similarities of author-
name strings.

Solution Overview. Figure 3 illustrates our two-step
name disambiguation framework. We use the following ideas
to design our algorithm: (1) Instead of comparing author-
name spellings along to find author-name strings that refer
to the same author, we use information associated with the
author-name strings like coauthor list, authors’ paper ti-
tles, venue list that authors often publish, or even institute
etc. For instance, to identify if “Dongwon Lee” is the name
variant of “D. Lee”, instead of computing the string edit
distance of two names, we may test if there is any correla-
tion between the coauthor lists of “Dongwon Lee” and “D.

1: Jeffrey Ullman
...

...

...
m: Wei Wang

...
10550: W. Wang

...

150466: Jeffrey D. Ullman
...

351455: Liwei Wang

...
n: J. D. Ullman

X Y

Wei Wang’s 
Block

Jeffrey Ullman’s 
Block

Measuring 
Distances

Measuring 
Distances

Wei Wang:

Jeffrey Ullman: 

Rank    ID Name
------------------------------------------
1 150466   Jeffrey D. Ullman
2      n J. D. Ullman

Figure 3: Overview of two-step framework.

Lee.” In the remainder of the paper, we only focus on ex-
ploiting coauthor information as the associated information
of an author. Exploiting other associated information (or
even hybrid of them as in [11]) is an interesting direction for
future work (the case of exploiting both author name and
its coauthor is discussed in Section 6.2); (2) To make the al-
gorithm scalable, we borrow the Blocking technique popular
in the solutions of record linkage problem, and modify the
baseline approach as follows:

/* let Ca be coauthor information of author a; */
for each name x (∈ X), create a block Bx(∈ B);
for each name y (∈ Y ) /* Step 1 */

assign y to all relevant blocks Bi(∈ B);
for each block Bx (∈ B) /* Step 2 */

for each name z (∈ Bx)
if dist(Cx, Cz) > φ, x and z are name variants;

Note that the time complexity after blocking becomes O(|X|+
|Y | + C|B|), where C is the average number of names per
block. In general C|B| � |X||Y |.

4. STEP 1: BLOCKING
The goal of step 1 is to put similar inputs into the same

group by some criteria (thus called Blocking) so that dis-
tance measures of step 2 can be done per group. If the
filtering criteria (i.e., blocking methods) are too aggressive,
then only small number of inputs will pass them and be
put into the same block, and sometimes even right answers
may be incorrectly pruned away. On the other hand, if the
criteria are too lenient, then too many number of inputs
(including noisy data) will pass them, bloating up the size
of blocks. Furthermore, in general, the size of blocks has
a close correlation with the scalability of the next step –
the bigger a block is, the longer it takes to do step 2. In
order to see the effects of different blocking schemes in the
name disambiguation context, therefore, we examine four
representative (and distinct) blocking methods – heuristic,
token-based, n-gram, and sampling. Informally, given a set
of p author names, n1, ..., np, blocking methods return a set



of q blocks, B1, ..., Bq as follows:

{B1, ..., Bq} ← Blocking({n1, ..., np})

where each Bi contains a set of author names nj . Note that
depending on the blocking scheme, the same author name
can be put into multiple blocks.

4.1 Spelling-based Heuristics
The simplest approach is to group author names based on

their name spellings, and can be attributed to a more general
method known as sorted neighborhood [12]. In our context,
all names with the same heuristics are grouped into the same
block. For instance, “Jeffrey Ullman” is grouped together
with “J. Ullman” if the heuristics is “the same initial of the
first name and the same last name (iFfL)”. Other plausible
heuristics are: the same initial of the first name and the
same initial of the last name (iFiL), or the same last name
(fL), or even the combination of the above. Different heuris-
tics would have slightly different impact on the performance
of the two-step methods. For instance, fL would generate
bigger sized blocks than iFfL does so that it usually has a
higher accuracy while being slower. Since comparing differ-
ent heuristics is not the goal of this research, and iFfL is the
most commonly used in citation matching context [13], in
our experimentation, only iFfL is used.

4.2 Token-based
In the token-based blocking, author names sharing at least

one common token are grouped into the same block (e.g.,
“Jeffrey D. Ullman” and “Ullman, Jason”). When authors
have rare name spellings, this scheme tends to generate a
small sized block. However, when authors’ name spellings
are common (e.g., “D. Lee”), have long names (e.g., “Juan
David Gonzalez Cobas El-Nasr”), or have several initials in
the name (e.g., “V. S. P. Srivastava”), then the resulting
block can have a large number of names.

4.3 N-gram
The idea of N -gram blocking is similar to that of token-

based one, except that it has finer granularity – instead of
checking common tokens, this method checks the existence
of common N continuous characters from author names (we
use N = 4 that gave good results in [3]). Since the granular-
ity is finer, the number of author names put into the same
block is the largest among the four blocking methods. For
instance, using N -gram blocking, “David R. Johnson” and
“F. Barr-David” are grouped into the same block because
of the common 4-gram “davi”.

4.4 Sampling
Another alternative blocking method is to use Sampling .

Given a name string x, suppose we want to draw a number
of samples that are most similar to x, and group them into
the same block. If the sampling process is somehow fast
while it generates accurate samples, then it can serve as a
good blocking method. One of the state-of-the-art sampling
techniques that satisfy both criteria (i.e., being fast and ac-
curate) is the sampling-based join approximation method
recently proposed by [10]. We adopt it to our context as
follows: Imagine each token from all author names has an
associated weight using the TFIDF metric in IR (i.e., com-
mon tokens in author names have lower weights while rare
ones have higher weights). Then, each author name t is as-

sociated with its token weight vector vt. Suppose that for
each name tq in an author name set R1, we want to draw a
sample of size S from another author name set R2 such that
the frequency Ci of name ti ∈ R2 can be used to approxi-
mate sim(vtp , vti) = σi. That is, σi can be approximated

by Ci
S

TV (tq), where TV (tq) =
∑|R2|

i=1 σi. Then, put ti into

a block only if Ci
S

TV (tq) ≥ θ, where θ is a pre-determined

threshold2. This strategy assures that all pairs of names
with similarity of at least θ can be put into the same block
with a desired probability, as long as the proper sample size
S is given.

5. STEP 2: MEASURING DISTANCES
After a set of blocks are created in step 1, the goal of step

2 is, for each block, to identify top-k author names that are
the closest to the name in question. For this, intuitively,
we can use various methods that people have developed to
measure the distance or similarity of two strings. For this,
we have compared two categories of methods – supervised
and unsupervised methods.

5.1 Supervised Methods
Han et al. [11] recently showed the effectiveness of two su-

pervised methods when there are enough number of training
data, naive bayes model [19] and support vector machines [7],
in a slightly different name disambiguation context.

5.1.1 The Naive Bayes Model (NBM)
In this method, we use Bayes’ Theorem to measure the

similarity between two author names. For instance, to cal-
culate the similarity between “Dongwon Lee” and “Lee, D.”,
we estimate the probability per coauthor of “Dongwon Lee”
in terms of the Bayes rule in training, and then calculate the
posterior probability of “Lee, D.” by the probability values
of the coauthors of “Dongwon Lee” in testing. As shown in
Figure 3, given a block in which there are an author name
x of X and authors yi of Y (i ∈ [1, k], where k is the to-
tal number of authors of Y ), we calculate the probability of
each pair of x and yi and find the pair with the maximal
posterior probability as follows:

Training. a collection of coauthors of x are randomly split,
and only the half is used for training. We estimate each
coauthor’s conditional probability P (Am|x) conditioned on
the event of x from the training data set, Ai ∈ {A1, ..., Aj , ..., Am}
and Aj is the j-th coauthor of x:

P (Aj |x) = P (Aj |Frequent, Coauthor, x)×
P (Frequent|Coauthor, x)× P (Coauthor|x) +

P (Aj |Infrequent, Coauthor, x)×
P (Infrequent|Coauthor, x)× P (Alone|x)

• P (Alone|x) is the probability of x writing a paper
alone.

• P (Coauthor|x) is the probability of x working for a
paper with coauthors.

• P (Frequent|Coauthor, x) is the probability of x writ-
ing a paper with the coauthors, each of who worked

2In experimentation, we used the more optimized version of
the sampling-based join approximation with a single scan
from [10].



Name Description
x, y coauthor names
Tx all tokens of the coauthor x
Cx all characters of x

CCx,y all characters in x common with y
Xx,y # of transpositions of char. in x relative to y

Table 1: Terms.

with x at least twice in the training data, conditioned
on the event of x’s past coauthors.

• P (Aj |Frequent, Coauthor, x) is the probability of x
working for a paper with a particular coauthor Aj .

Testing. we use the following target function: VNBM =
MAXyi∈N{P (yi)ΠkP (Ak|yi)}, where N is the total number
of authors of Y in the block, and k is the k-th coauthor in
yi, who also appears in the coauthor list of x in the training
data set.

5.1.2 The Support Vector Machines (SVM)
The Support Vector Machines (SVM) is one of the popular

supervised classification methods. In our context, it works
as follows: First, all coauthor information of an author in a
block is transformed into vector-space representation. Au-
thor names in a block are randomly split, and 50% is used for
training, and the other 50% is used for testing. Given train-
ing examples of author names labeled either YES (e.g., “J.
Ullman” and “Jeffrey D. Ullman”) or NO (e.g., “J. Ullman”,
“James Ullmann”), the SVM creates a maximum-margin hy-
perplane that splits the YES and NO training examples. In
testing, the SVM classifies vectors by mapping them via ker-
nel trick to a high dimensional space where the two classes
of equivalent pairs and different ones are separated by a hy-
perplane. For the SVM prediction, we use the Radial Basis

Function (RBF) kernel [7], K(xi, yi) = e−γ||xi−yi||2 , (γ > 0),
among alternatives (e.g., linear, polynomial, or sigmoid ker-
nel).

5.2 Unsupervised Methods
The second group of methods that we consider is the un-

supervised ones that do not require any training.

5.2.1 String-based Distance
In this scheme, the distance between two author names

are measured by the “distance” between their coauthor lists.
That is, to measure the distance between “Dongwon Lee”
and “Lee, D.”, instead of computing the dist(“Dongwon
Lee”, “Lee, D.”), we compute the dist(coauthor-list(“Dongwon
Lee”), coauthor-list(“Lee, D.”)). Among many possible dis-
tance measures, we used two token-based string distances
(e.g., Jaccard and TFIDF ) and two edit-distance-based ones
(e.g., Jaro and Jaro-Winkler) that were reported to give a
good performance for the general name matching problem
in [6]. We briefly describe the metrics below. For details of
each metric, refer to [6].

Using the terms of Table 1, the four metrics can be defined
as follows:

• Jaccard(x,y) =
|Tx

⋂
Ty|

|Tx
⋃

Ty|

• TFIDF(x,y) =
∑

w∈Tx∩Ty
V (w, Tx)×V (w, Ty), where

V (w, Tx)=log(TFw,Ty+1)× log(IDFw)√∑
w

′ (log(TFw,Ty +1)×log(IDFw))

(symmetrical for V (w, Ty)), where TFw,Tx is the fre-
quency of w in Tx, and IDFw is the inverse of the
fraction of names in a corpus containing w.

• Jaro(x,y) = 1
3
×(

|CCx,y|
|Cx| +

|CCy,x|
|Cy| +

|CCx,y|−XCCx,y,CCy,x

2|CCx,y| )

• Jaro−Winkler(x,y) = Jaro(x, y)+ max(|L|,4)
10

×(1−
Jaro(x, y)), where L is the longest common prefix of
x and y.

5.2.2 Vector-based Cosine Distance
In this approach, instead of using string distances, we use

vector distances to measure the similarity of the coauthor
lists. We model the coauthor lists as vectors in the vec-
tor space, each dimension of which corresponds to a unique
author name appearing in the citations in the block. For
example, suppose we have a block that has three groups of
citations, one for “D. Lee”, another for “D. W. Lee” and the
other for “D. Y. Lee”. In the first group, suppose we have
five papers, each coauthored by “D. Lee” with one or more
of “J. Kang”, “P. Mitra”, and “T. Han”. Further suppose
among the five papers “D. Lee” coauthored three times with
“J. Kang”, four times with “P. Mitra”, and once with “T.
Han”. Similarly, suppose we have 10 papers in the second
group, in which “D. W. Lee” coauthored five times with “J.
Kang”, seven times with “P. Mitra”, and three times with
“W. Chu”. In the last group, suppose we have seven pa-
pers in which “D. Y. Lee” coauthored three times with “P.
Chopra”, five times with “J. Xu”, and once with “J. Kang”.

The total number of unique coauthor names in the block
is 6 except the three “D. Lee” name variants. In order to
determine if the three name variants are indeed referring
to the same person, we model the coauthor information for
each variant as a vector and compute the distances between
the vectors. The resulting vectors have 12 dimensions, each
of which corresponds to one of 6 unique coauthor names ap-
pearing in the block. For example, for the first group of
citations for “D. Lee”, we have a vector v(“D. Lee”) = [0 0
1 3 4 0], provided that the dimensions are ordered by coau-
thors’ last name and values in the vector represent the num-
ber of papers that the author represented by the dimension
coauthored with “D. Lee”. For example, the value, 1, in the
third dimension represents the number of papers that “T.
Han” coauthored with “D. Lee”. Similarly, we have v(“D.
W. Lee”) = [0 3 0 5 7 0] and v(“D. Y. Lee”) = [3 0 0 1 0
5]. In order to measure the distance between the vectors, v
and w, we use the simple cosine distance, an angle between
two vectors, defined as: cos θ = v·w

‖v‖·‖w‖ .

5.3 Examples
Table 2 shows the contents of a block with three names

after step 1 – “Jeffrey D. Ullman”, “J. D. Ullman”, and
“Daniel Ullman”. Using this data, let us compute two dis-
tances: D1 = dist(“Jeffrey D. Ullman”, “J. D. Ullman”)
and D2 = dist(“Jeffrey D. Ullman”, “Daniel Ullman”) for
the naive bayes model and the support vector machines.

First, consider how to compute both distances using the
NBM. “Jeffrey D. Ullman” has four coauthors – “Alfred V.
Aho”, “John E. Hopcroft”, “Fereidoon Sadri”, and “David
Maier”. Suppose the papers with ID 1 and 3 are chosen
as training data. Then, there are 3 coauthors in the train-
ing set. Let us call it as X. Next, we need to calculate
the probabilities of coauthors conditioned on the event of



Name ID Coauthors
1 “Jeffrey D. Ullman”

“Jeffrey D. Ullman” 2 “Jeffrey D. Ullman”, “Alfred V. Aho”, “John E. Hopcroft”
3 “Fereidoon Sadri”, “Jeffrey D. Ullman”, “Alfred V. Aho”, “David Maier”
4 “David Maier”, “J. D. Ullman”

“J. D. Ullman” 5 “Rajeev Motwani”, “Alfred V. Aho”, “Fereidoon Sadri”, “J. D. Ullman”
6 “Sergey Brin”, “Alfred V. Aho”, “J. D. Ullman”, “David Maier”

“Daniel Ullman” 7 “Walter Stromquist”, “Daniel Ullman”
8 “James Gary Propp”, “Robin Pemantle”, “Aviezri S. Fraenkel”, “Daniel Ullman”

Table 2: Contents of an example block.

Distance Cosine TFIDF Jaccard Jaro JaroWinker
D1 0.89 0.74 0.59 0.75 0.78
D2 0.0 0.08 0.04 0.67 0.71

Table 3: Distance results of unsupervised methods.

“Jeffrey D. Ullman” using the Bayes rule as follows: P (1)
= P (“Fereidoon Sadri”|”Jeffrey D. Ullman”) = 0.5, P (2) =
P (“Alfred V. Aho”|”Jeffrey D. Ullman”) = 0.5, and P (3)
= P (“David Maier”|”Jeffrey D. Ullman”) = 0.5. In test-
ing, we try to find an author name with a maximal pos-
terior probability. For instance, the author name “J. D.
Ullman” shares three coauthors with “Jeffrey D. Ullman”
– “Fereidoon Sadri”, “Alfred V. Aho”, and “David Maier”
(i.e., |Y | = 3). Then, using the formula in Section 5.1.1,
the probability of “J. D. Ullman” (i.e., D1) is computed as:
|Y |
|X| × P (1) × P (2) × P (3) = 1.0 × 0.5 × 0.5 × 0.5 = 0.125.

The probability of “Daniel Ullman” can be computed sim-
ilarly and is 0.0. Two distances, D1 and D2, for the five
unsupervised methods are shown in Table 3.

6. EXPERIMENTAL COMPARISON

6.1 Set-up
Data sets. We have gathered real citation data from

four different domains, as summarized in Table 4. Com-
pared to previous work, all of the four data sets are sub-
stantially “large-scale” (e.g., DBLP has 360K authors and
560K citations in it). Different disciplines appear to have
slightly different citation policies and conventions. For in-
stance, Physics and Medical communities seem to have more
number of coauthors per article than Economics community.
Furthermore, the conventions of citations also vary. For in-
stance, citations in e-Print use the first name of authors as
only initial, while ones in DBLP use full names.

Artificial name variants. Ideally, it would be desir-
able to apply our framework to existing DLs to find all real
name variants. However, given the large number of cita-
tions that we aim at, it is not possible nor practical to find
a “real” solution set. For instance, to determine if “A” and
“B” are indeed name variants, human experts had to trace
it carefully. Therefore, we use artificial solution sets. Never-
theless, in practice, we envision that our framework be used
as a tool to assist human experts to narrow down candidate
name variants from hundreds to thousands.

To make solution sets, for each data set, we prepare two
lists of author names, X and Y , where X is initially empty,
and Y contains the entire author names (e.g., 364,377 names
for DBLP). Then, we pick top-100 author names from Y ac-

cording to their number of citations, and generate 100 corre-
sponding new name variants artificially. Note that the rea-
son that we have to use “top 100” instead of “random 100”
is because of the two supervised methods in step 2. That is,
the two supervised methods, first proposed in [11], do not
work without enough numbers of training sets. For instance,
for “Grzegorz Rozenberg” with 344 citations and 114 coau-
thors in DBLP, we create a new name like “G. Rozenberg”
(abbreviation of the first name) or “Grzegorz Rozenbergg”
(typo in the last name). Then, after splitting the original
344 citations into halves, each name carries half of citations,
172, and is put back into X and Y , respectively. At the end,
there are 100 and 364,377 names in X and Y , respectively.
Then, through the proposed two-step name disambiguation
framework, for each name in X, we test if the algorithm is
able to find the corresponding artificial name variant in Y
(that we generated and thus know what they are).

Note that the way we generate artificial name variants
may affect the performance of blocking. For instance, if
all artificial names that we generated are abbreviation of
first names, then both heuristic and 4-gram blocking would
work well. However, if artificial name variants were gener-
ated by adding garbage characters in last names, then this
will negatively affect the performance of heuristic blocking,
while it has little effect on 4-gram blocking method. In
general, it is difficult to precisely capture the right percent-
ages of different error types in author name variants. For
the original name “Ji-Woo K. Li”, some of possible error
types are name abbreviation (“J. K. Li”), name alternation
(“Li, Ji-Woo K.”), typo (“Ji-Woo K. Lee” or “Jee-Woo K.
Lee”), contraction (“Jiwoo K. Li”), omission (“Ji-Woo Li”),
or combinations of these.

To quantify the effect of error types on the accuracy of
name disambiguation algorithms, we first compared two cases:
(1) mixed error types of abbreviation (30%), alternation
(30%), typo (12% each in first/last name), contraction (2%),
omission (4%), and combination (10%); and (2) abbrevia-
tion of the first name (85%) and typo (15%). The accuracy
of the former case is shown in Figure 4, and that of the
latter case is in Figure 9(a). Note that regardless of the er-
ror types or their percentages, all blocking methods, except
iFfL, show reasonably similar accuracies. That is, since both
token-based and sampling-based blocking have a granular-
ity of “tokens” in processing, they are more tolerable than
iFfL which can only handle well name abbreviation error
type. Likewise, since the granularity of 4-gram is the finest
(i.e., characters), it shows the best tolerance for diverse er-
ror types. All subsequent experimentations are done using
the latter case (85%/15%).

Implementations. We have implemented various al-
gorithms of Sections 4 and 5 as follows: (1) Step 1 : Token-



Data set Domain # of authors/ # of coauthors per author # of tokens in coauthors per author
# of citations (avg/med/std-dev) (avg/med/std-dev)

DBLP CompSci 364,377/562,978 4.9/2/7.8 11.5/6/18
e-Print Physics 94,172/156,627 12.9/4/33.9 33.4/12/98.3
BioMed Medical 24,098/6,169 6.1/4/4.8 13.7/12/11.0

EconPapers Economics 18,399/20,486 1.5/1/1.6 3.7/3/4.1

Table 4: Summary of data sets.
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Figure 4: Accuracy with various error types
(DBLP).

based and N-gram blocking methods were implemented by
the open source tool, SecondString [24], where all space-
delimited words from coauthor lists are treated as tokens
and “4” was used for N-gram (i.e., 4 continuous characters)
as tokens. For the sampling-based blocking, we used the im-
plementation of [10] with a sample size of 64 and a threshold
of 0.1, and ran the experimentation in Microsoft SQL Server
2000. (2) Step 2 : For the supervised learning methods, ci-
tations per author were randomly split, with half of them
used for training, and the other half for testing. For the
implementation of Support Vector Machines, LIBSVM [9]
was used. In particular, we found that the multi-classifier
based implementation in [11] performs poorly for our exper-
imentation. This is because a classifier needs to be prepared
for each candidate, and there are usually large number of
candidates in our large-scale setting. Therefore, instead,
our implementation of SVM is binary-classifier based. In
the comparison, the binary-classifier based SVM showed an
accuracy about 25% higher than multi-classifier based one
(while taking about 20% less time). For the string-based
distance functions of the unsupervised learning methods,
we used the implementations of TFIDF, Jaccard, Jaro, and
Jaro-Winkler from SecondString [24].

Evaluation metrics. Two main metrics that we used
are scalability and accuracy : (1) The scalability of the frame-
work was measured by the “size” of blocks generated in step
1 and the “time” it took to process both steps 1 and 2; (2)
To measure how effectively name variants can be found, we
measured the “accuracy” of top-k as follows. For a name in
X, our algorithm finds top-k candidate name variants in Y .
If the top-k candidates indeed contain the solution, then it
is a match. Otherwise, it is a mis-match. This is repeated
for all 100 names in X. Then, overall accuracy is defined as:
Accuracy = # of matches

100
.

The accuracy was measured for different k values (i.e.,
k = 1, 5, 10). For instance, with k = 5 in the DBLP data
set, for each author in X, methods return the top-5 can-
didate name variants out of 364,377 authors, and if one of
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Figure 5: Distribution of name variants in top-10.

Method Step 1 Step 2
naive 1-N – name

two-step name-name 2-NN name name
two-step name-coauthor 2-NC name coauthor
two-step name-hybrid 2-NH name hybrid

Table 5: Solution space.

these 5 candidates is the artificial name variant that we cre-
ated, then it is a match. We repeated all of the subsequent
experiments for three window sizes of 1, 5, and 10, and found
that accuracies with larger window size (k = 10) are about
10% higher than those with smaller window size (k = 1).
The seemingly only-small drop of the accuracy can be ex-
plained as follows. As shown in Figure 5, about 70% of
correct name variants are returned as the first among 10
candidates. That is, even if we use a smaller window size
(k = 1), 70% of name variants would be found correctly.
Since the most of name variants are found within rank 3,
when we used k = 5, its accuracy is almost as good as that
of k = 10. In the following, therefore, we show the results
for k = 5.

6.2 Our Framework vs. Other Alternatives
Table 5 summarizes four possible approaches to the given

problem: (1) 1-N is a single-step pair-wise name matching
scheme without using blocking and coauthor information;
(2) 2-NN uses the two-step approach, but do not exploit
coauthor information; (3) 2-NC is the main proposal in our
framework; and (4) 2-NH is the modification of 2-NC in that
in step 2, it combines both author and coauthor information
together with proper weights (e.g., we used 1/4 and 3/4 for
author and coauthor, respectively).

Figure 6 summarizes the experimental results of four al-
ternatives using three representative metrics – TFIDF, Jac-
card, and Jaro. In terms of the processing time, 1-N is
the slowest for TFIDF and Jaccard, as expected, due to
its quadratic time complexity (i.e., 100 × 364, 377 times of
pair-wise name comparisons). However, Figure 6(c) shows a
rather unexpected result in that both 2-NC and 2-NH take
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(d) Accuracy (TFIDF) (e) Accuracy (Jaccard) (f) Accuracy (Jaro)

Figure 6: Comparison of four alternatives (DBLP with k = 1).

more time than 1-N does, despite their advantages through
blocking in step 1. This is due to the combination of the
slow distance computation of Jaro method and long coau-
thor names, and can be explained as follows. To make the
discussion simple, suppose computing dist(x, y) takes 1 sec,
and its computation time is proportional to the number of
characters in x and y. That is, dist(x, y) takes 1 sec, while
dist(x100, y20) takes 100 × 20 = 2, 000 sec (if xn denotes
characters x with the length of n).

Then, (1) Since 1-N computes dist(x, y) for all pairs from
X and Y , it takes |X| × |Y | = 100 × 364, 377 ≈ 36.4M
sec. (2) In Section 6.1, we chose top-100 authors with the
most number of citations as our targets. Since these 100
authors have a large number of citations, their number of
coauthors is large too (i.e., on average 100 coauthors per
author). Therefore, using 2-NC, computing dist(x′, y′) (i.e.,
x′ and y′ are coauthors of x and y, respectively) is equal to
computing dist(x100, y100), taking about 100×100 = 10, 000
sec. Since all names in a block must be compared, if a block
has 3,500 names (e.g., 4-gram blocking in Figure 7), then
it takes 3, 500 × dist(x′, y′) = 3, 500 × 10, 000 ≈ 35M sec.
Note that the time for 1-N, 36.4M sec, is roughly the same
as that for 2-NC, 35M sec. That is, when computation-
heavy distance metrics such as Jaro or Jaro-Winkler are
used in step 2, and since coauthor names to consider are very
long, the expense offset the benefit of the blocking in step
1. Note that our 100 target names in testing are those with
the largest number of coauthors. Therefore, the scenario in
our experimentation is the “worst case” for 2-NC.

In terms of accuracy, both 2-NC and 2-NH shows about
20%-30% improvement, compared to 1-N and 2-NN, validat-
ing the assumption that exploiting additional information
than the simple name spelling is beneficial in the name dis-
ambiguation problem. Compared to 2-NC, 2-NH shows no
significant improvement. However, for Jaro method (Fig-
ure 6(f)), the accuracy of 2-NH, when token-based or 4-
gram blocking is used, improves by 10%-15% from 2-NC.
Note that Jaro method tends to work better when an input
string is short. Therefore, when both name and coauthor
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Figure 7: Average # of authors per block.

are considered in 2-NH, Jaro takes advantage of relatively
good accuracy from “name” side, although it suffers from
“coauthor” side. At the end, this results in about 10%-15%
improvements of accuracy. Since 2-NH takes longer than
2-NC while it shows only a negligible improvement in ac-
curacy, in the remaining experiments, we use 2-NC as our
default scheme.

6.3 Scalability
Figure 7 illustrates the average # of authors per each

block. Regardless of the data set, 4-gram blocking gener-
ates the most number of author names into each block. On
the other hand, both heuristic and sampling blocking meth-
ods put a small number of author names into each block.
Nevertheless, the time it takes to perform the blocking is
quite small, except the sampling-based blocking which needs
a pre-processing for TF/IDF weighting and sampling.

The processing time for step 2 is shown in Figure 8(b)-
(c) for DBLP (364,377 authors) and EconPapers (18,399 au-
thors) data sets. The other two data sets have similar graphs
to that of EconPapers and omitted. In general, cosine simi-
larity method is the fastest and edit-distance based distance
metrics such as Jaro or Jaro-Winkler are the slowest. This
is especially so since the string to compare is a long coau-
thor list (instead of short author name). Both NBM and
SVM are relatively faster than TFIDF, Jaccard, Jaro, and
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(a) Step 1 (b) Step 2 (DBLP) (c) Step 2 (EconPapers)

Figure 8: Processing time for Steps 1 and 2.

NBM SVM Cosine
iFfL 3.452 59.088 5.057

Token 73.509 292.752 17.625
4-gram 108.362 334.819 21.182

Sampling 3.906 69.092 5.176

Table 6: Processing time for step 2 of NBM, SVM,
and Cosine methods.

Jaro-Winkler. Note that those token-based distance metrics
such as TFIDF and Jaccard are slower than NBM, SVM,
and cosine methods, because there are a large number of
candidate name variants in each block. Detailed compari-
son of cosine vs. two supervised methods (NBM and SVM)
are shown in Table 6. Although all three appear to take the
same processing time in Figure 8 due to the enlarged Y-axis,
cosine method is in fact much faster than the others, show-
ing a better scalability. The SVM takes more time than the
others since the hyperplane needs to be split in succession
due to SVM’s binary-classifiers.

6.4 Accuracy
Figure 9 summarizes the accuracies of four blocking meth-

ods of step 1 combined with seven distance metrics of step 2
for all four data sets (with k = 5). The case of EconPapers
data set is omitted since it is quite similar to that of BioMed
data set. Several phenomenons are noticeable.

In general, the distance metrics such as the SVM, cosine,
TFIDF and Jaccard perform much better than the others,
regardless of the blocking methods used in step 1. For in-
stance, for the DBLP, the four methods achieved near per-
fect accuracies finding all 100 name variants out of 364,377
candidates. The similar accuracies are observed for e-Print
data set as well. Although their accuracies drop to about
0.9 for BioMed, they are still outperforming the other meth-
ods such as NVM, Jaro, or Jaro-Winkler. The reason of the
lower accuracy for BioMed data set can be explained next.
Although fast, the accuracy of spelling-based heuristics such
as iFfL is poor throughout all experimentations. This is be-
cause it is incapable of handling various error types in name
variants (e.g., “J. Ullman” and “Jef. D. Ullmannn”).

The accuracies of DBLP and e-Print data sets are better
than that of BioMed (and the omitted EconPapers) data set.
The poor performance of BioMed case is mainly due to the
small number of citations per authors in data set. Since 2-
NC scheme is exploiting coauthor information of the author
in question to find name variants, the existence of “common”
coauthor names is a must. However, in the BioMed data set,

each author has only a small number of citations, 1.18, on
average, and only small number of coauthors, 6.1, on aver-
age, making a total number of coauthors as 7.19 = 1.18×6.1
(assuming all coauthors are distinct). Therefore, for two ar-
bitrary author names x and y, the probability of having
“common” coauthors in the BioMed data set is not high.
On the other hand, for the e-Print data set, the average
number of citations (resp. coauthors) per author is higher,
4.27 (resp. 12.94), making a total number of coauthors as
55.25 = 4.27× 12.94 – roughly 8 times of the BioMed data
set.

In general, Jaro or Jaro-Winkler method in step 2 gave
poorer accuracy than the others. Since they are edit-distance
based methods that are heavily affected by the number of
transpositions, as the length of string to compare increases
(in 2-NC, it is a long coauthor string), its error rate in-
creases as well. In the e-Print data set, the accuracies are
lower, compared to those of DBLP, when the sampling-based
blocking is used in step 1. This is because most of citations
in the e-Print data set use abbreviation for the first name of
authors (e.g., “F. E. Bauer” or “E. Fernandez”). Since the
sampling technique use TFIDF for weighting tokens, com-
mon tokens like abbreviated first name (e.g., “E.”) would
have lower weight via IDF, negatively affecting matching
process. This is why the sampling-based blocking performed
worse than the plain token-based blocking.

6.5 Summary of Experiments
In short, 2-NC showed a better scalability and accuracy

compared to 1-N or 2-NN, validating our assumption that
using associated information than name itself would be ben-
eficial in disambiguating name variants. One could even get
a better accuracy with 2-NH at the cost of time. When 2-NC
was used, a combination of token-based or N -gram blocking
(step 1) and SVM as a supervised method or cosine metric
as a unsupervised method (step 2) gave the best scalabil-
ity/accuracy trade-off. In addition, this combination was
tolerable to various error types in names. Finally, the ac-
curacy of simple name spelling based heuristics were shown
to be quite sensitive to the error types, while edit distance
based distance metrics such as Jaro or Jaro-Winkler proved
to be inadequate for large-scale name disambiguation prob-
lem for its slow processing time.

7. CONCLUSION
Based on our scalable two-step framework, we compared

various configurations – four blocking in step 1 (i.e., heuris-
tic, token, N -gram, sampling), seven distance metrics via
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(a) DBLP (b) e-Print (c) BioMed

Figure 9: Accuracy comparison (k = 5).

“coauthor” information in step 2 (i.e., NBM, SVM, Cosine,
TFIDF, Jacard, Jaro, Jaro-Winkler), against four data sets
(i.e., Computer Science, Physics, Medical, Economics). Ex-
perimental results verify that our proposed two-step frame-
work using coauthor relation (instead of author name alone)
shows much improved scalability and accuracy (e.g., 4 times
faster and 50% more accurate using sampling/TFIDF on
DBLP data set) compared to one-step approach.
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