
Social Spam Discovery using Bayesian Network Classifiers

based on Feature Extractions

Dae-Ha Park

Division of Information Technology

The Cyber University of Korea

Seoul, South Korea

summer69@cyberkorea.ac.kr

Eun-Ae Cho

Visual Display Division

Samsung Electronics Co., Ltd.

Suwon, South Korea

ea.cho@samsung.com

Byung-Won On

Advanced Institutes of

Convergence Technology

Seoul National University

Suwon, South Korea

bwon@snu.ac.kr

Abstract — People always communicate with each other

through social networking services (SNSs). However they often

receive various kinds of unwelcomed messages that can be

requests from uncomfortable friends or may be advertisements.

In this paper, we defined these messages as “social spams”, and

suggested new classification method to detect them. By

characterizing the problem of discovering social spams which

frequently occurs in current popular SNSs, we extracted and

exploited novel features that had not shown in the existing E-

mail or web spamming prevention techniques. Our proposal

for collecting various features such as behavior, celebrity, trust,

common interest, etc. could incrementally been updated for

SNS users. We modified the existing well-known classification

techniques such as Bayesian network classifiers (BNCs) to

customize for SNS features. To make decision efficiently, we

computed Katz or trust scores with only part of updated

network topologies.

Keywords — Social network service; privacy; social spam

discovery; Bayesian network classifier; Katz score

I. INTRODUCTION

According to a report [1], over the past 12 months more
than four-fifths of social networking service (SNS) users
reported that they had received unwanted friend requests,
messages, or posts on their social or professional network
profiles. While friend requests on their own seem innocuous
enough, they are often just the first step towards whatever
the spammer’s intentions of malicious activities are, because
they redirect users to phishing or malware sites or even just
unsolicited advertisements [2]. Furthermore, users have
received an average of 64 unwanted friend invitations,
messages or postings in the last 12 months. And Two-thirds
of users said they would consider switching social network
services if spam became too frequent [1]. Therefore, it is
very important issue to detect unwelcomed messages and
control them adequately.

To solve this issue, so-called “social spams”, we define a
spam as any sort of unwanted message between two users in
a social networking service.

Traditional works on email and web spamming problems
are [3] [4] [5] [6] [7]. However, as a solution for the social
spam detection problem, using well-known spamming
techniques employed in different domains (e.g., E-mails or
web) is not the best strategy. More specifically, the existing

researches are not effective in this problem due to the
following three characteristics of social spams:

 Since most messages make it hard to use content-
based spam filtering schemes, which have
effectively been employed in the E-mail spam
problem, content-based filtering schemes are not
sufficient to detect social spams. For example, a
friend request often does not have any messages or
contents. Even though it contains a few contents, it is
mostly very general. They do not generally reveal
spamming words like “Viagra” or “stock”.

 Determining whether a friend request is a spam or
not is difficult due to its subjectiveness and the
nature of social networks. Allowing friend requests
only from someone who are directly or indirectly
associated might hurt an important goal of social
networks, making new friends. For instance, a user
in Korea may want to make friends with another
random user in Japan who might like the friend
request as she always has fancied Korea. On the
other hand, a male who is a perfectly normal user in
a social network might be seeking to make friends
with good-looking females and be sending a bunch
of unwanted friend requests or messages to random
females. Those messages could or could not be spam
to the receivers. Thus the spamness is a subjective
measure in social networks.

 The traditional well-known classification techniques
such as Naïve Bayes or Support Vector Machines
(SVM) [8] are not effective. For instance, unlike the
existing spamming problem (e.g., E-mail spam
problem), there exist explicit correlations among
features in our social spam problem. For example, a
recipient may accept a friend request if she is aware
that a sender is her friend’s friend. Another recipient
may accept a friend request by his personality (e.g.,
social or introvert). Some recipients may accept a
friend request by both his personality and friendship.
Due to such feature dependencies in our problem,
Naïve Bayes would not work effectively. Since
SVM is required to run the expensive training step, it
would not be efficient in our problem.

To address these challenges, we exploit various features
based on previous history of users’ spams, user behaviors,
common interests and groups, and network topology by

friendship or influence as well as content-based spam
analysis. Then, we develop a well-designed classification
model which combines the features collected and determines
whether a friend-request is a spam or not. In particular, we
focus on the Bayesian Network Classifier (BNC) which
would be effective with features in which there are close
correlations among features [9].

II. FEATURE EXTRACTIONS

In our problem, we define a social network with
nodes and edges, assuming that is a large graph, consisting
of hundreds of thousands of nodes. An edge stands for the
friendship link between two nodes. In other words, when two
users would like to make friends to each other, one user
sending a friend request denotes a sender , while the other
user receiving from denotes a recipient . If accepts ,
the friendship link is created between and . Each node
has its profile consisting of word terms
describing personal information and interests (e.g., hobby
and favorite sports) of user . In addition, a spam is defined
as any sort of unwanted friend request between and in a
social networking service .

For simplicity, let us assume that we extract the features
 from the static training set [] (e.g., the past
months from the current time), and then when sends to
 at , our spam filtering system (as centralized) detects if
becomes a spammer on the fly.

 Request Reject Ratio (RR): RR =

. This feature indicates

how many friend requests sent by were rejected by
other nodes in the previous time []. The
has the particular value of Request Reject Ratio.

 Request Acceptance Ratio (AR): AR =

. This is the

opposite feature to Request Reject Ratio. This is,
how many friend requests received by were
accepted in [] . The has the particular
value of Request Acceptance Ratio.

 Celebrity (CB): How influent is in ? This is
based on the hypothesis that is more likely to
accept a friend-request from famous rather than
others. This can be measured by the Katz method
[10] that computes the degree of influence of an
actor in a social network. has his Katz score,
quantifying the importance of in .

 Trust (TR): How trustable is in ? Starting from a
set of non-spammers (as seed nodes), and
propagating their trust scores through G, estimate the
trust ranking score for .

 Personality (PS): If the personality of is social, she
is more likely to accept the friend-request from . If
the number of neighbors , we define her
personality as social or extrovert (1), while her
personality is shy or introvert (0), otherwise. has a
binary value of 0 or 1.

 Same Community (SC): If and are in the same
group , is more likely to accept the friend-request
of . Thus investigation is needed if a set of
communities created by a certain community
detection technique has the input of network
topology . and have a binary value:
the same community (1) and different
communities (0).

 Friend’s Friend (FF): Is friend’s friend of ? If
is the friend’s friend of , is more likely to
guarantee . and have a binary value – Friend’s
friend (1) and (0), otherwise.

 Commonness (CM): CM =
| |

| |
, where is a set

of interest-tags in and is a set of interest-

tags in . This feature works based on the
assumption that users in usually make new friends
to peers who are interested in common interests –
hobby, occupation, and so on. and have the same
similarity score of common interests between and
 .

 Content Analysis (CA): CA =

 or

.

If there are some odd terms in , we can
conjecture that he is the person to advertise his
product or items. has the similarity score of terms
between and the blacklist maintained by
our spam filtering system.

III. MODELING FEATURES FOR BAYESIAN NETWORK

CLASSIFIER

For applying our framework to the BNC, we separate
feature values to states (i.e., categories) per feature. For
instance, for the request reject ratio (RR) feature, we can
categorize to three states such as Low (L),
Medium (M), and High (H). Suppose that we assign L = [0,
0.3], M = [0.3, 0.7], and H = [0.7, 1]. If RR(x) = 0.35, RR(x)
= M. In the same way, we can model as follows:

 Request Reject Ratio RR(x) = L, M, or H.

 Request Acceptance Ratio AR(y) = L, M, or H.

 Celebrity CB(x) = L, M, or H.

 Trust TR(x) = L, M, or H.

 Content Analysis CA(x) = Y (Yes) or N (No).

 Personality PS(y) = E (Extrovert) or I (Introvert).

 Friend’s Friend FF(x, y) = Y (Yes) or N (No).

 Same Community SC(x, y) = Y (Yes) or N (No).

 Commonness CM(x, y) = Y (Yes) or N (No).

A. Notation for Online Learning of Bayesian Networks

In this section, attributes or stands for features.

From time to time, we call an attribute a (random) variable.
As an example, is personality. Each attribute contains a

set of states {

 } – e.g., a set of the personality

feature is {extrovert, introvert}. is a class label that
contains one of two states : spam and non-spam. is the
number of attributes, and is the number of states.

B. Structure Learning

Structural learning is to find the best network that fits the
available data. To construct the structure of the Bayesian
network, we use conditional mutual information between
attributes given the class variable [11] [12]. This function is
defined as

 (|) ∑

. This

function measures the information that provides about

when the value of is known.
To accomplish the structural learning in the online

Bayesian network learning, our proposed algorithm is also
upgraded to have some online properties such as updating
the network parameters and its structure adaptively. The
outline of our algorithm can be given as follows:

1) Collect data.

2) Define the variables from the available data.

3) Start with a network with no links.

4) Compute (|) between each pair of attributes

 .

5) Build a complete undirected graph in which the nodes

are the attributes . Annotate the weight of an

edge connecting to by (|).

6) Build a maximum weighted spanning tree. The run

time is , where is less than 10 in our

framework.

7) Transform the resulting undirected tree to a directed

one by choosing a root variable and setting the

direction of all edges to be outward from it.

8) Construct a tree structure by adding a node labeled by

 and adding an arc from to each .

9) Update the network parameters along with new data.

10) Update the network structure:

 If enough new data obtained, go to step 1) and
generate a new network structure.

 If no structural update is necessary, go to step 9).

C. Parameter Learning

The parameter learning has to calculate the values in the
conditional probability table in a node (random variable).
This task corresponds to Step 9) in the above structure
learning. Let us assume that a fixed structure of the network.
The learning is then the estimation of the conditional
probability table (CPT) entries of the network.

Let be a node (random variable) in the network that

takes any value from the set

 . Let be the set

of parents of in the network that takes one of the

configurations denoted by

 . An entry in the

CPT of the variable is given by (
 |

 We are given a set of data cases ,

and we have a current set of parameters that define the
network. The data are either complete, that is all values of
the variables are given, or incomplete.

The updating of the network parameters is achieved by

the following maximization: ̃ [
 ̅] where is the normalized log likelihood of the

data given the network, ̅ is a distance (e.g., Chi
squared distance) between the two models and is the
learning rate. Solving the maximization under the constraint
that ∑ for , Bauer et al. [13] derived an

algorithm which they named . Adapting the
algorithm to the online learning case is as follows: The
evidence becomes a single instance of the network and for
each new evidence vector, the network’s parameters are all

updated according to the rule: ̃

{

 [

]

The online update method above is named the Voting EM
algorithm [14]. Such online update rule is referred to as

stochastic learning, with

 being the

instantaneous gradient estimate of the constraint optimization
problem. The learning rate controls how much we rely on
the past. As approaches 1, the past is weighted less, and the
update of the parameters is based more on the present data.
As approaches zero, the network parameters change slowly
from the previous model. The learning rate can either be
constant or adaptive.

D. Training and Testing for BNC

Suppose that the structure of the Bayesian network
shown in Figure 1 is created in terms of the structure
learning algorithm in Section B. In the figure, random
variable stands for the root variable, in which there are two
cases: and . Figure 1 indicates
the Bayesian network in case of . More
specifically, RR is a random variable (feature) indicating
Request Reject Ratio. As discussed above, RR has a set of

three states {L, M, H}. In addition, each state (e.g., L) has

the probability (relative frequencies) which appear in the
training set.

Figure 1. A Bayesian network with random variables (e.g., RR) and their

corresponding probability distributions.

Note some random variables circled in the dotted line.
For instance, the features are PS (Personality), CM
(Commonness), and FF (Friend’s friend). FF has the two
parent variables – C and PS. We associate with FF a

conditional probability distribution, which specifies for FF
the probability distribution over the values of FF given each
combination of values for its parents – C and PS. Intuitively,
there may be the correlation between FF (the child node) and
PS (the parent node). If the personality of y is introvert, she
is more likely to accept the friend-request of x in case that x
is turned out to be her friend’s friend.

Based on the Bayesian network in Figure 1, we become
aware of the classification rule: P(RR, AR, PS, CM, FF, CB,

TR, SC, CA|C = spam) = P(RR|C = spam) × P(AR|C =

spam) × P(PS|C = spam) × P(CM|PS, C = spam) ×

P(FF|PS, C = spam) × P(CB|C = spam) × P(SC|C =

spam) × P(TR|SC, C = spam) × P(CA|C = spam) (1.1).

In the training step, we can get equation (1.1) based on
the training data set. Now our spam filtering system is
keeping eye on a friend-request from to . Whenever
sends a friend-request to , our spam filtering system simply
computes values related to features. For instance,
 , , , , ,
 , , , and .
Using equation (1.1) with probabilities, which are
corresponding to the feature values in Figure 1, the system
can determine whether the friend-request from to is a
spam or not. More specifically, the classification formula is
 ∏ ,
where is i-th feature, is spam or non-spam and
is the parent feature of .

E. Likelihood Computation in BNC

The efficiency of BNC can be demonstrated by the
computation of likelihood

 (i.e., posterior likelihood = prior

likelihood / evidence).
When a user sends a friend-request to the other user ,

the likelihood of (|) , where (1)

 ∏

 , where and all parents of

depend only on ; (2) ∏ (|)

 , where and

all parents of depend only on ; and (3)

∏ (|)

 , where and all parents of

depend on both and .
Then, can be cached on and can be cached on .

These quantities do not vary according to or . Only
needs to be computed because it involves both sides.

From this likelihood computation technique, we can
assure that our methods filter social spams is applicable for
real world SNS domains. In addition, the algorithms that
implement BNC can be very efficient even for very large
data sets.

IV. CONCLUSION AND DISCUSSION

In this paper, we present a novel social spam detection
framework, in which we extract and exploit effective
features based on user behaviors and previous patterns of
spammers. In addition, we devised incremental features and
online classification model based on the personalized,
multiple BNCs. In particular, our multiple classifiers work
on the scalability problem. In conclusion, we can provide a
guideline to manage the messages which looks like spams in
SNSs.

For future works, the application in the real world will be
needed to use this method more useful.

REFERENCES

[1] Harris Interactive, “A study about Social Network Scams”, 2008,
“http://www.docstoc.com/docs/711319/socialnetworkingsurvey”.

[2] S. Perez, “Social Networks and Spam”, ReadWriteWeb, 2008,
“http://www.readwriteweb.com/archives/social_networks_and_spam.
php”

[3] D. Sculley and G. Wachman, “Relaxed Online SVMs for Spam
Filtering”, ACM SIGIR Special Interest Group on Information
Retrieval (SIGIR’07), 2007.

[4] C. Castillo, D. Donato, and A. Gionis, “Know your Neighbors: Web
Spam Detection using the Web Topology”, ACM SIGIR Special
Interest Group on Information Retrieval (SIGIR’07), 2007.

[5] M. Chang, W. Yih, and C. Meek, “Partitioned Logistic Regression for
Spam Filtering”, ACM SIGKDD Int'l Conf. Knowledge Discovery
and Data Mining (KDD’08), 2008.

[6] P. Kolari, A. Java, T. Finin, T. Oates, and A. Joshi, “Detecting Spam
Blogs: A Machine Learning Approach”, National Conference on
Artificial Intelligenc (AAAI’06), 2006.

[7] B. Mehta, S. Nangia, and M. Gupta, “Detecting Image Spam using
Visual Features and Near Duplicate Detection”, International World
Wide Web Conference(WWW’08), 2008.

[8] C. Cortes and V. Vapnik, "Support-Vector Networks", Machine
Learning, 1995.

[9] L. Getoor, N. Friedman, D. Koller, and A. Pfeffer, “Learning
Probabilistic Relational Models”, 1999.

[10] L. Katz, “A New Status Index Derived from Sociometric Analysis”,
Psychometrika, 1953.

[11] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian Network
Classifiers”, Kluwer Academic Publishers, Boston, 1997.

[12] F. Sahin, “A Bayesian Network Approach to the Self-organization
and Learning in Intelligent Agents”, Ph.D. dissertation, Virginia
Polytechnic and State University, 2001.

[13] E. Bauer, D. Koller, and Y. Singer, “Update Rules for Parameter
Estimation in Bayesian Networks”, In Uncertainty in Artificial
Intelligence (UAI), pages 3-13, 1997.

[14] I. Cohen, A. Bronstein, and F. Cozman, “Adaptive Online Learning
of Bayesian Network Parameters”, Technical Report, Hewlett-
Packard Company 2001.

[15] R. Chen, K. Sivakumar, and H. Kargupta, “Collective Mining of
Bayesian Networks from Distributed heterogeneous Data”, Journal of
Knowledge and Information Systems 2003.

