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Abstract — People always communicate with each other 

through social networking services (SNSs). However they often 

receive various kinds of unwelcomed messages that can be 

requests from uncomfortable friends or may be advertisements. 

In this paper, we defined these messages as “social spams”, and 

suggested new classification method to detect them. By 

characterizing the problem of discovering social spams which 

frequently occurs in current popular SNSs, we extracted and 

exploited novel features that had not shown in the existing E-

mail or web spamming prevention techniques. Our proposal 

for collecting various features such as behavior, celebrity, trust, 

common interest, etc. could incrementally been updated for 

SNS users. We modified the existing well-known classification 

techniques such as Bayesian network classifiers (BNCs) to 

customize for SNS features. To make decision efficiently, we 

computed Katz or trust scores with only part of updated 

network topologies. 
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I.  INTRODUCTION 

According to a report [1], over the past 12 months more 
than four-fifths of social networking service (SNS) users 
reported that they had received unwanted friend requests, 
messages, or posts on their social or professional network 
profiles. While friend requests on their own seem innocuous 
enough, they are often just the first step towards whatever 
the spammer’s intentions of malicious activities are, because 
they redirect users to phishing or malware sites or even just 
unsolicited advertisements [2]. Furthermore, users have 
received an average of 64 unwanted friend invitations, 
messages or postings in the last 12 months. And Two-thirds 
of users said they would consider switching social network 
services if spam became too frequent [1]. Therefore, it is 
very important issue to detect unwelcomed messages and 
control them adequately. 

To solve this issue, so-called “social spams”, we define a 
spam as any sort of unwanted message between two users in 
a social networking service.  

Traditional works on email and web spamming problems 
are [3] [4] [5] [6] [7]. However, as a solution for the social 
spam detection problem, using well-known spamming 
techniques employed in different domains (e.g., E-mails or 
web) is not the best strategy. More specifically, the existing 

researches are not effective in this problem due to the 
following three characteristics of social spams: 

 Since most messages make it hard to use content-
based spam filtering schemes, which have 
effectively been employed in the E-mail spam 
problem, content-based filtering schemes are not 
sufficient to detect social spams. For example, a 
friend request often does not have any messages or 
contents. Even though it contains a few contents, it is 
mostly very general. They do not generally reveal 
spamming words like “Viagra” or “stock”. 

 Determining whether a friend request is a spam or 
not is difficult due to its subjectiveness and the 
nature of social networks. Allowing friend requests 
only from someone who are directly or indirectly 
associated might hurt an important goal of social 
networks, making new friends. For instance, a user 
in Korea may want to make friends with another 
random user in Japan who might like the friend 
request as she always has fancied Korea. On the 
other hand, a male who is a perfectly normal user in 
a social network might be seeking to make friends 
with good-looking females and be sending a bunch 
of unwanted friend requests or messages to random 
females. Those messages could or could not be spam 
to the receivers. Thus the spamness is a subjective 
measure in social networks. 

 The traditional well-known classification techniques 
such as Naïve Bayes or Support Vector Machines 
(SVM) [8] are not effective. For instance, unlike the 
existing spamming problem (e.g., E-mail spam 
problem), there exist explicit correlations among 
features in our social spam problem. For example, a 
recipient may accept a friend request if she is aware 
that a sender is her friend’s friend. Another recipient 
may accept a friend request by his personality (e.g., 
social or introvert). Some recipients may accept a 
friend request by both his personality and friendship. 
Due to such feature dependencies in our problem, 
Naïve Bayes would not work effectively. Since 
SVM is required to run the expensive training step, it 
would not be efficient in our problem. 

To address these challenges, we exploit various features 
based on previous history of users’ spams, user behaviors, 
common interests and groups, and network topology by 



friendship or influence as well as content-based spam 
analysis. Then, we develop a well-designed classification 
model which combines the features collected and determines 
whether a friend-request is a spam or not. In particular, we 
focus on the Bayesian Network Classifier (BNC) which 
would be effective with features in which there are close 
correlations among features [9]. 

II. FEATURE EXTRACTIONS 

In our problem, we define a social network   with   
nodes and edges, assuming that   is a large graph, consisting 
of hundreds of thousands of nodes. An edge stands for the 
friendship link between two nodes. In other words, when two 
users would like to make friends to each other, one user 
sending a friend request   denotes a sender  , while the other 
user receiving   from   denotes a recipient  . If   accepts  , 
the friendship link   is created between   and  . Each node 
has its profile         consisting of word terms    
describing personal information and interests (e.g., hobby 
and favorite sports) of user  . In addition, a spam is defined 
as any sort of unwanted friend request between   and   in a 
social networking service  . 

For simplicity, let us assume that we extract the features 
  from the static training set   [     ]  (e.g., the past   
months from the current time  ), and then when   sends   to 
  at  , our spam filtering system (as centralized) detects if   
becomes a spammer on the fly. 

 Request Reject Ratio (RR): RR = 
                 

                              
. This feature indicates 

how many friend requests sent by   were rejected by 
other nodes in the previous time   [     ]. The   
has the particular value of Request Reject Ratio. 

 Request Acceptance Ratio (AR): AR = 
                     

                                  
. This is the 

opposite feature to Request Reject Ratio. This is, 
how many friend requests received by   were 
accepted in   [     ] . The   has the particular 
value of Request Acceptance Ratio. 

 Celebrity (CB): How influent   is in  ? This is 
based on the hypothesis that   is more likely to 
accept a friend-request from famous   rather than 
others. This can be measured by the Katz method 
[10] that computes the degree of influence of an 
actor in a social network.   has his Katz score, 
quantifying the importance of   in  . 

 Trust (TR): How trustable   is in  ? Starting from a 
set of non-spammers (as seed nodes), and 
propagating their trust scores through G, estimate the 
trust ranking score for  . 

 Personality (PS): If the personality of   is social, she 
is more likely to accept the friend-request from  . If 
the number of neighbors   , we define her 
personality as social or extrovert (1), while her 
personality is shy or introvert (0), otherwise.   has a 
binary value of 0 or 1. 

 Same Community (SC): If   and   are in the same 
group  ,   is more likely to accept the friend-request 
of  . Thus investigation is needed if a set of 
communities created by a certain community 
detection technique has the input of network 
topology        .   and   have a binary value: 
the same community       (1) and different 
communities       (0). 

 Friend’s Friend (FF): Is   friend’s friend of  ? If   
is the friend’s friend of  ,   is more likely to 
guarantee  .   and   have a binary value – Friend’s 
friend       (1) and (0), otherwise. 

 Commonness (CM): CM = 
|     |

|     |
, where    is a set 

of interest-tags in         and    is a set of interest-

tags in        . This feature works based on the 
assumption that users in   usually make new friends 
to peers who are interested in common interests – 
hobby, occupation, and so on.   and   have the same 
similarity score of common interests between   and 
 . 

 Content Analysis (CA): CA = 
                                

   
   or 

 

                  
. 

If there are some odd terms   in        , we can 
conjecture that he is the person to advertise his 
product or items.   has the similarity score of terms 
between         and the blacklist   maintained by 
our spam filtering system. 

III. MODELING FEATURES FOR BAYESIAN NETWORK 

CLASSIFIER 

For applying our framework to the BNC, we separate 
feature values to states (i.e., categories) per feature. For 
instance, for the request reject ratio (RR) feature, we can 
categorize        to three states such as Low (L), 
Medium (M), and High (H). Suppose that we assign L = [0, 
0.3], M = [0.3, 0.7], and H = [0.7, 1]. If RR(x) = 0.35, RR(x) 
= M. In the same way, we can model as follows: 

 Request Reject Ratio RR(x) = L, M, or H. 

 Request Acceptance Ratio AR(y) = L, M, or H. 

 Celebrity CB(x) = L, M, or H. 

 Trust TR(x) = L, M, or H. 

 Content Analysis CA(x) = Y (Yes) or N (No). 

 Personality PS(y) = E (Extrovert) or I (Introvert). 

 Friend’s Friend FF(x, y) = Y (Yes) or N (No). 

 Same Community SC(x, y) = Y (Yes) or N (No). 

 Commonness CM(x, y) = Y (Yes) or N (No). 

A. Notation for Online Learning of Bayesian Networks 

In this section, attributes    or    stands for features. 

From time to time, we call an attribute a (random) variable. 
As an example,    is personality. Each attribute contains a 

set of states {  
      

  } – e.g., a set of the personality 

feature is {extrovert, introvert}.   is a class label that 
contains one of two states  : spam and non-spam.     is the 
number of attributes, and     is the number of states. 



B. Structure Learning 

Structural learning is to find the best network that fits the 
available data. To construct the structure of the Bayesian 
network, we use conditional mutual information between 
attributes given the class variable [11] [12]. This function is 
defined as  

  (     | )  ∑              
          

              
       

. This 

function measures the information that    provides about    

when the value of   is known. 
To accomplish the structural learning in the online 

Bayesian network learning, our proposed algorithm is also 
upgraded to have some online properties such as updating 
the network parameters and its structure adaptively. The 
outline of our algorithm can be given as follows: 

1) Collect data. 

2) Define the variables from the available data. 

3) Start with a network with no links. 

4) Compute   (     | ) between each pair of attributes  

     . 

5) Build a complete undirected graph in which the nodes 

are the attributes          . Annotate the weight of an 

edge connecting    to    by   (     | ). 

6) Build a maximum weighted spanning tree. The run 

time is              , where     is less than 10 in our 

framework. 

7) Transform the resulting undirected tree to a directed 

one by choosing a root variable and setting the 

direction of all edges to be outward from it. 

8) Construct a tree structure by adding a node labeled by 

  and adding an arc from   to each   . 

9) Update the network parameters along with new data. 

10) Update the network structure: 

 If enough new data obtained, go to step 1) and 
generate a new network structure. 

 If no structural update is necessary, go to step 9). 

C. Parameter Learning 

The parameter learning has to calculate the values in the 
conditional probability table in a node (random variable). 
This task corresponds to Step 9) in the above structure 
learning. Let us assume that a fixed structure of the network. 
The learning is then the estimation of the conditional 
probability table (CPT) entries of the network. 

Let    be a node (random variable) in the network that 

takes any value from the set     
      

   . Let     be the set 

of parents of    in the network that takes one of the 

configurations denoted by      
       

   . An entry in the 

CPT of the variable    is given by       (     
 |    

   
 
   We are given a set of data cases              , 

and we have a current set of parameters   that define the 
network. The data are either complete, that is all values of 
the variables are given, or incomplete. 

The updating of the network parameters is achieved by 

the following maximization:  ̃         [       
     ̅ ] where       is the normalized log likelihood of the 

data given the network,      ̅  is a distance (e.g., Chi 
squared distance) between the two models and   is the 
learning rate. Solving the maximization under the constraint 
that ∑         for     , Bauer et al. [13] derived an 

algorithm which they named      . Adapting the       
algorithm to the online learning case is as follows: The 
evidence becomes a single instance of the network and for 
each new evidence vector, the network’s parameters are all 

updated according to the rule:   ̃   
   

{
    

     [
    

     
          

     
          

     
   ]           

      
      

    
             

  

The online update method above is named the Voting EM 
algorithm [14]. Such online update rule is referred to as 

stochastic learning, with 
    

     
          

     
          

 being the 

instantaneous gradient estimate of the constraint optimization 
problem. The learning rate   controls how much we rely on 
the past. As   approaches 1, the past is weighted less, and the 
update of the parameters is based more on the present data. 
As   approaches zero, the network parameters change slowly 
from the previous model. The learning rate can either be 
constant or adaptive. 

D. Training and Testing for BNC 

Suppose that the structure of the Bayesian network 
shown in Figure 1 is created in terms of the structure 
learning algorithm in Section B. In the figure, random 
variable   stands for the root variable, in which there are two 
cases:        and           . Figure 1 indicates 
the Bayesian network in case of       . More 
specifically, RR is a random variable (feature) indicating 
Request Reject Ratio. As discussed above, RR has a set of 

three states {L, M, H}. In addition, each state (e.g., L) has 

the probability (relative frequencies) which appear in the 
training set. 

 

 
Figure 1.  A Bayesian network with random variables (e.g., RR) and their 

corresponding probability distributions. 

Note some random variables circled in the dotted line. 
For instance, the features are PS (Personality), CM 
(Commonness), and FF (Friend’s friend). FF has the two 
parent variables – C and PS. We associate with FF a 



conditional probability distribution, which specifies for FF 
the probability distribution over the values of FF given each 
combination of values for its parents – C and PS. Intuitively, 
there may be the correlation between FF (the child node) and 
PS (the parent node). If the personality of y is introvert, she 
is more likely to accept the friend-request of x in case that x 
is turned out to be her friend’s friend. 

Based on the Bayesian network in Figure 1, we become 
aware of the classification rule: P(RR, AR, PS, CM, FF, CB, 

TR, SC, CA|C = spam) = P(RR|C = spam) × P(AR|C = 

spam) × P(PS|C = spam) × P(CM|PS, C = spam) × 

P(FF|PS, C = spam) × P(CB|C = spam) × P(SC|C = 

spam) × P(TR|SC, C  = spam) × P(CA|C = spam) (1.1). 

In the training step, we can get equation (1.1) based on 
the training data set. Now our spam filtering system is 
keeping eye on a friend-request from   to  . Whenever   
sends a friend-request to  , our spam filtering system simply 
computes values related to features. For instance,       
 ,        ,        ,          ,          , 
       ,          ,        , and        . 
Using equation (1.1) with probabilities, which are 
corresponding to the feature values in Figure 1, the system 
can determine whether the friend-request from   to   is a 
spam or not. More specifically, the classification formula is 
                            ∏              , 
where    is i-th feature,   is spam or non-spam and        
is the parent feature of   . 

E. Likelihood Computation in BNC 

The efficiency of BNC can be demonstrated by the 
computation of likelihood                 
                    

              
 (i.e., posterior   likelihood = prior   

likelihood / evidence). 
When a user   sends a friend-request to the other user   , 

the likelihood of   (           | )        , where (1) 

  ∏             
   
   , where    and all parents of    

depend only on  ; (2)   ∏  (  |      )
   
   , where    and 

all parents of    depend only on  ; and (3)   

∏  (   |       )
   
    , where     and all parents of     

depend on both   and  . 
Then,    can be cached on   and   can be cached on  . 

These quantities do not vary according to   or  . Only   
needs to be computed because it involves both sides. 

From this likelihood computation technique, we can 
assure that our methods filter social spams is applicable for 
real world SNS domains. In addition, the algorithms that 
implement BNC can be very efficient even for very large 
data sets. 

IV. CONCLUSION AND DISCUSSION 

In this paper, we present a novel social spam detection 
framework, in which we extract and exploit effective 
features based on user behaviors and previous patterns of 
spammers. In addition, we devised incremental features and 
online classification model based on the personalized, 
multiple BNCs. In particular, our multiple classifiers work 
on the scalability problem. In conclusion, we can provide a 
guideline to manage the messages which looks like spams in 
SNSs. 

For future works, the application in the real world will be 
needed to use this method more useful. 
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