
Effective and Scalable Solutions for Mixed and Split
Citation Problems in Digital Libraries

Dongwon Lee∗ Byung-Won On Jaewoo Kang Sanghyun Park
Penn State / USA Penn State / USA NCSU / USA Yonsei Univ. / Korea
dongwon@psu.edu on@cse.psu.edu kang@csc.ncsu.edu sanghyun@cs.yonsei.ac.kr

ABSTRACT
In this paper, we consider two important problems that
commonly occur in bibliographic digital libraries, which se-
riously degrade their data qualities: Mixed Citation (MC)
problem (i.e., citations of different scholars with their names
being homonyms are mixed together) and Split Citation
(SC) problem (i.e., citations of the same author appear un-
der different name variants). In particular, we investigate
an effective yet scalable solution since citations in such dig-
ital libraries tend to be large-scale. After formally defin-
ing the problems and accompanying challenges, we present
an effective solution that is based on the state-of-the-art
sampling-based approximate join algorithm. Our claim is
verified through preliminary experimental results.

1. INTRODUCTION
Bibliographic Digital Libraries (DLs), such as DBLP, Cite-

Seer or e-Print arXiv, contain a large number of citation1

records. Such DLs have been an important resource for aca-
demic communities since scholars often try to search for rel-
evant works from DLs. Researchers also use the citation
records in order to measure the publication’s impact in the
research community. In addition, citations are often used
when users search for articles of interest. Therefore, it is
important to keep the citations of DLs consistent and up-
to-date. However, due to data entry errors, imperfect cita-
tion gathering software or common author names, DLs often
have many errors in their citation collections. In particular,
we focus on two problems that commonly occur in many
existing DLs as follows.

First, when two scholars have the same name spellings,
their citation data are mistakenly merged into a single col-
lection, leading to an incorrect citation analysis results. We
call this as Mixed Citation (MC) problem. For instance,
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Figure 1: Mixed citations of “Dongwon Lee” in
DBLP. Boxed ones are by another “Dongwon Lee.”

Figure 1 illustrates a collection of citation data by one of the
authors, “Dongwon Lee”, in DBLP. Note that two citations
by “another” scholar with the same name spelling are listed
(boxed ones). The reason of this mixture is that there exist
two scholars with the name “Dongwon Lee” – a computer
scientist at Penn State and an MIS scholar at U. Minnesota
– with somewhat overlapping domains of interests.

Second, due to various reasons, DLs tend to keep the ci-
tations of single author under various name variants2. We
call this as Split Citation (SC) problem. For instance,
imagine a scholar “John Doe” has published 100 articles.
However, a DL keeps two separate name variants, “John
Doe” and “J. D. Doe”, each of which contains 50 citations.
In such a case, users searching for all the articles of “John
Doe” will get only 50 of them. Similarly, any bibliomet-
rical study would underestimate the impact of the author
“John Doe”, splitting his fare share into “John Doe” and
“J. D. Doe” incorrectly. Such a problem of ambiguous au-
thor names exists in many of existing DLs, as illustrated in
Figure 2, where a renowned computer scientist “Jeffrey D.
Ullman” appear under 10 different name variants in ACM
Portal’s DL.

In essence, both MC and SC problems cannot be com-
pletely avoided unless each person carries a universal ID.
Note that these problems would still occur even if digital

2In this paper, the name variants refer to the different
spellings of author names that are in fact referring to the
same person.
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Figure 2: Split citations of “Jeffrey D. Ullman” in
ACM Portal.

object identifier (DOI)3 system is fully adopted, since it usu-
ally does not govern the identity of a person or her name.
In this paper, therefore, we investigate efficient solutions for
these problems.

2. BACKGROUND
Related Work. In [14], we investigated issues related to
system support for both problems, and in [20], we explored
the split citation problem. Han et al. [12] proposed two su-
pervised learning-based approaches for a related problem.
Their problem can be viewed as a kind of the SC prob-
lem in our jargon although they do not explicitly define the
problem. Furthermore, their approach is not scalable to
handle large-scale DLs. On the other hand, we investigate
both the MC and SC problems, and present scalable solu-
tions. Nevertheless, we also tested their ideas of supervised
learning methods in the step 2 of the name disambiguation
algorithm (Section 4.2). The goal of our study is not to com-
pare supervised methods against unsupervised ones, but to
explore the combinations of alternatives that give good scal-
ability/accuracy trade-offs in the two-step approaches. We
recently learned that [2] introduces a clustering-based so-
lution to a problem similar to our MC problem, and the
performance comparison is currently underway. ALIAS sys-
tem in [22] proposes a framework to detect duplicate entities
such as citations or addresses, but its focus is on the learning
aspect.

Since the core technique of our proposals in this paper is
to match two related citations (i.e., citation matching), our
work is closely related to more general class of problems,
known as various names – record linkage (e.g., [10, 3]), ci-
tation matching (e.g., [19]), identity uncertainty (e.g., [21]),
merge-purge (e.g., [13]), object matching (e.g., [5]), dupli-
cate detection (e.g., [22, 1]), approximate string join (e.g., [11])
etc.

String similarity measures used in our work were proposed

3http://www.doi.org/

by Jaro [16] and Winkler [25]. Bilenko et al. have stud-
ied name matching for information integration [3] using
string-based and token-based methods. Cohen et al. have
also compared the efficacy of string-distance metrics, like
JaroWinkler, for the name matching task [6]. In DLs, this
problem is called citation matching. In the citation match-
ing domain, [18] experimented with various distance-based
algorithms with a conclusion that word based matching per-
forms well. We have implemented all these methods in the
second step of your algorithm and compared their efficacy
to other methods.

Before we can process citations, we assume that field seg-
mentation and identification has been completed using some
methods like one in [4]. Blocking was first proposed by Kel-
ley et al. [17] in the record linkage literature. Our sampling
idea can be viewed as a blocking scheme and is also simi-
lar in flavor to the two-step citation matching schemes pro-
posed in [15, 19] where initial rough but fast clustering (or
“Canopy”) is followed by more exhaustive citation matching
step.

Another stream of works that are relevant to our work is
name/entity disambiguation and authority controls in NLP
community. For instance, works done in [24] aim at de-
tecting name variants automatically using data mining or
heuristics techniques, but do not consider the issue of scal-
ability nor in the context of digital libraries. Similarly, [9]
introduces a method to find matching variants of named en-
tity in a given text such as project name (e.g., DBLP vs.
Data Base and Logic Programming). [23] discusses an ef-
fort to standardize author names using a unique number,
called INSAN, and [8] is a recent implementation for name
authority control, called HoPEc. On the contrary, we focus
more on two specific problems relevant to citations of digital
libraries.

Preliminaries. In this Section, we introduce a technique
that our solutions exploit. One of the state-of-the-art sam-
pling techniques that satisfy both criteria (i.e., being fast
and accurate) is the sampling-based join approximation method
recently proposed by [11]. We adopt it to our context as fol-
lows: Their main idea is that if, for each string ni, one is
able to extract a small sample S that contains mostly strings
suspected to be highly similar to ni, then this sample S
serves as a candidate set, and the remaining strings can be
quickly ignored (i.e., pre-filtering). To get the “good” sam-
ple S, imagine each token from all strings has an associated
weight using the TFIDF metric in IR (i.e., common tokens
in strings have lower weights while rare ones have higher
weights). Then, each string t is associated with its token
weight vector vt. Suppose that, for each string tq in a string
set R1, we want to draw a sample of size S from another
string set R2 such that the frequency Ci of string ti ∈ R2 can
be used to approximate sim(vtq , vti) = σi. That is, σi can

be approximated by Ci
S

TV (tq), where TV (tq) =
∑|R2|

i=1 σi.

Then, put ti into a candidate set only if Ci
S

TV (tq) ≥ θ,

where θ is a pre-determined threshold4. This strategy as-
sures that all pairs of strings with similarity of at least θ
survive the pre-filtering stage and put into the candidate
set with a desired probability, as long as the proper sample
size S is given.

4In experimentation, we used the more optimized version of
the sampling-based join approximation with a single scan
from [11].
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Figure 3: Overview of our solution to MC problem.

3. THE MIXED CITATION PROBLEM

3.1 Problem Definition & Solution Overview
Problem Definition. We formally define the Mixed Ci-
tation problem as follows:

Given a collection of citations, C, by an author,
ai, can we quickly and accurately identify false
citations by another author aj, when ai and aj

have the identical name spellings?

The challenge here is that since two different authors, ai

and aj , have the “same” name spellings, one cannot easily
distinguish the two by using distance between their names
(e.g., Edit distance). To overcome this difficulty, we propose
to exploit author’s associated information. That is, given
an author ai, we may use additional information such as her
coauthor list, common keywords that she often use in the
titles of articles, or common publication outlets, etc.

Solution Overview. Consider a citation ci with a set of
coauthors A = {a1, ..., an}, a set of keywords from the title
T = {t1, ..., tm}, and a venue name V . Then, after remov-
ing the i-th coauthor ai (∈ A), can we correctly label ci to
ai? That is, when ai is removed from the citation ci, can
we guess back the removed author using associated informa-
tion? Let us call this method as Citation Labeling algorithm.
If we assume that there is a “good” citation labeling func-
tion fcl : ci → aj . Then, using the fcl, the original MC
problem can be solved as follows. Given citations C by an
author a1:

for each citation ci (∈ C)
remove a1 (i.e., original name) from coauthor list of ci;
fcl is applied to get a2 (i.e., guessed name);
if a1 6= a2, then ci is a false citation;
remove ci from C;

At the end, C has only correct citations by a1. Therefore, if
one can find a good citation labeling function fcl, then one
can solve the MC problem.

3.2 Citation Labeling Algorithm
Let us examine fcl more closely. Suppose one wants to

“label” a collection of citations, C, against a set of possible
authors A. A naive algorithm, then, is (let φ be a similarity
measure between a citation ci and an author aj):

for each citation ci (∈ C)

examine all names aj(∈ A);
return aj (∈ A) with MAX φ;

This baseline approach presents two technical challenges:
(1) Since ci and aj are two different entities to compare in
real world, the choice of good similarity measure is critical;
and (2) When a DL has a large number of citations and
authors in the collection, the baseline approach with a time
complexity O(|C||A|) is prohibitively expensive to run (e.g.,
the DBLP has about 0.56 million authors). In order to ad-
dress these challenges, we propose two solutions as follows.

Similarity between Citation and Author. In [12], au-
thors reported a promising result by representing a citation
as 3-tuple of coauthors, titles, and venues. Although pro-
posed for a different problem, the idea of 3-tuple represen-
tation of citations can be adapted to our context as follows:
the similarity between a citation c and an author a (here-
after, sim(c, a)) can be estimated as the similarity between
a 3-tuple representation of c and that of a:

sim(c, a) = α sim(~cc, ~ac) + β sim(~ct, ~at) + γ sim(~cv, ~av)

where α + β + γ = 1 (i.e., weighting factors), ~cc, ~ct, and
~cv are token vectors of coauthors, paper titles, and venues,
respectively, of the citation c, and ~ac, ~at, and ~av are token
vectors of coauthors, paper titles, and venues from “all” ci-
tations of the author a, respectively. In turn, each similarity
measure between two token vectors can be estimated using
the standard IR techniques such as the cosine similarity ,
cos(θ) = ~v·~w

‖~v‖·‖~w‖ , along with TFIDF.

For instance, a citation c “E. F. Codd: A Relational
Model of Data for Large Shared Data Banks. Commun.
ACM 13(6): 377-387 (1970)” is represented as: ~cc = [“E.F.
Codd”], ~ct = [“Relational”, “Model”, “Data”, “Large”, “Shared”,
“Data”, “Banks”], and ~cv = [“Commun.”, “ACM”])5. Simi-
larly, an author “John Doe” with two citations (“John Doe,
John Smith: Data Quality Algorithm, IQIS, 2005”, and
“Dongwon Lee, John Doe, Jaewoo Kang: Data Cleaning
for XML, ACM/IEEE Joint C. on Digital Libraries, 2005”)
is represented as: ~ac=[“John Doe”, “John Smith”, “Dong-
won Lee”, “Jaewoo Kang”], ~at=[“Data”, “Quality”, “Algo-
rithm”, “Cleaning”, “XML”], and ~av=[“IQIS”, “ACM/IEEE”,
“Joint”, “C.”, “Digital”, “Libraries”]. In Section 5, we study
the variance of handling duplicate tokens (in set and bag
models). Then, the similarity of the citation c and an author
“John Doe” is equivalent to: sim(c, a). That is, if sim(c, a)
is beyond some threshold, we “guess” that c is a false cita-
tion and should have been labeled under “John Doe”, not
“E. F. Codd” (false positive case). When there are many
such authors, we label c as the author with the maximum
sim(c, a).

Speed-up through Sampling. In general, the baseline
approach has a quadratic time complexity which is too ex-
pensive for large-size DLs. However, note that for a citation
c, one does not need to check if c can be labeled as an author
a for all authors. If one can quickly determine candidate au-
thor set from all authors (i.e., pre-filtering), then c better
be tested against only the authors in candidate set. We use
the Gravano et al.’s approximate join algorithm introduced
in Section 2 for the pre-filtering. That is,

for each citation ci (∈ C)

5We pre-prune all stopwords from the title.
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Figure 4: Overview of our solution to SC problem.

draw a sample set S(⊆ A);
examine all names sj(∈ S);
return sj (∈ S) with MAX φ;

Note that the complexity is reduced to O(|A|+ |C||S|), that
is typically more scalable than O(|C||A|) since |S| � |A|.

4. THE SPLIT CITATION PROBLEM

4.1 Problem Definition & Solution Overview
We formally define the Split Citation problem as follows:

Given two lists of author names, X and Y , for
each author name x (∈ X), find name variants
of x: y1, y2, ..., yn (∈ Y ).

The baseline approach to solve the problem is to treat each
author name as a “string”, and perform all pair-wise string
distance using some distance function, dist(x, y):

for each name x (∈ X)
for each name y (∈ Y )

if dist(x, y) < φ, x and y are name variants;

This baseline approach has the limitations similar to the
baseline approach of the MC problem in Section 3. Since the
baseline approach is prohibitively expensive to run for large
DLs (because of its quadratic time complexity, O(|X||Y |))),
there is a need for more scalable algorithms. Furthermore,
many authors from similar cultural or national background
shares similar spellings in their name, those algorithms should
not be too much dependent on the syntactic similarities of
author-name strings.

Solution Overview. Figure 4 illustrates our name disam-
biguation algorithm: (1) Instead of syntactically comparing
two name spellings alone, we use information associated with
the author-name strings like coauthor list, authors’ paper ti-
tles, and venue list. For instance, to identify if “Dongwon
Lee” is the name variant of “D. Lee”, instead of computing
the string edit distance of two names, we may test if there
is any correlation between the coauthor lists of “Dongwon
Lee” and “D. Lee.” In the remainder of the paper, we only
focus on exploiting coauthor information as the only associ-
ated information of an author. Exploiting other associated
information (or even hybrid of them as in [12]) is an inter-

Method Step 1 Step 2
naive 1-N – name

two-step name-name 2-NN name name
two-step name-coauthor 2-NC name coauthor
two-step name-hybrid 2-NH name hybrid

Table 1: Solution space of name disambiguation al-
gorithm.

esting direction for future work; (2) To make the algorithm
scalable, we again borrow the sampling idea.

4.2 Name Disambiguation Algorithm
The name disambiguation algorithm is as follows:

/* let Ca be coauthor information of author a; */
for each name x (∈ X) draw a sample set Sx(∈ S);
for each name y (∈ Y ) /* Step 1 */

assign y to all relevant samples Si(∈ S);
for each sample Sx (∈ S) /* Step 2 */

for each name z (∈ Sx)
if dist(Cx, Cz) < φ, x and z are name variants;

Note that the time complexity after sampling becomes O(|X|+
|Y |+C|S|), where C is the average number of names per sam-
ple. In general C|S| � |X||Y |.

Depending on the choices in both Step 1 and 2, four vari-
ations of the name disambiguation algorithm are feasible,
as summarized in Table 1: (1) 1-N is a single-step pair-wise
name matching scheme without using sampling or coauthor
information (i.e., it uses plain pair-wise author name com-
parison); (2) 2-NN uses the two-step approach, but do not
exploit “coauthor” information; (3) 2-NC is the main pro-
posal of ours using the sampling and exploiting “coauthor”
information instead of author names; and (4) 2-NH is the
modification of 2-NC in that in step 2, it combines both au-
thor and coauthor information together with proper weights
(e.g., we used 1/4 and 3/4 for author and coauthor, respec-
tively).

Although using the sampling speeds up the whole process-
ing significantly, another important issues is to find out the
right distance metric to use in Step 2. Since each author is
represented as a potentially very long coauthor list, different
distance metrics tend to show different accuracy/performance
trade-off. To examine this issue, we have considered two
supervised methods (i.e., Naive Bayes Model and Support
Vector Machine) and five unsupervised methods (i.e., cosine,
TFIDF, Jaccard, Jaro and JaroWinkler). In what follows,
we briefly describe each method.

Naive Bayes Model (NBM). In this method, we use
Bayes’ Theorem to measure the similarity between two au-
thor names. For instance, to calculate the similarity between
“Dongwon Lee” and “Lee, D.”, we estimate the probability
per coauthor of “Dongwon Lee” in terms of the Bayes rule
in training, and then calculate the posterior probability of
“Lee, D.” with the coauthors’ probability values of “Dong-
won Lee” in testing. As shown in Figure 4, given a block
corresponding to an author name x in X with the associated
author names yi in Y (i ∈ [1, k], where k is the total num-
ber of author names from Y ), we calculate the probability
of each pair of x and yi and find the pair with the maximal
posterior probability as follows:

For training, a collection of coauthor names of x are ran-
domly split, and only the half is used for training. We
estimate each coauthor’s conditional probability P (Am|x)



Name Description
x, y coauthor names
Tx all tokens of the coauthor x
Cx all characters of x

CCx,y all characters in x common with y
Xx,y # of transpositions of char. in x relative to y

Table 2: Terms.

conditioned on the event of x from the training data set,
Ai ∈ {A1, ..., Aj , ..., Am} and Aj is the j-th coauthor of x:

P (Aj |x) = P (Aj |Frequent, Coauthor, x)×
P (Frequent|Coauthor, x)× P (Coauthor|x) +

P (Aj |Infrequent, Coauthor, x)×
P (Infrequent|Coauthor, x)× P (Alone|x)

where P (Alone|x) is the probability of x writing a paper
alone, P (Coauthor|x) is the probability of x working for a
paper with coauthors in future, P (Frequent|Coauthor, x)
is the probability of x working for a paper with the coau-
thors, who worked with x at least twice in the training
data, conditioned on the event of x’s past coauthors, and
P (Aj |Frequent, Coauthor, x) is the probability of x work-
ing for a paper with a particular coauthor Aj

For testing, we use the following target function: VNBM =
MAXyi∈N{P (yi)ΠkP (Ak|yi)}, where N denotes is the total
number of author names from Y in the block and Ak is the
k-th coauthor in yi, being the same coauthor as in x.

Support Vector Machines (SVM) is one of the popular
supervised classification methods. In our context, it works
as follows: First, all coauthor information of an author in a
block is transformed into vector-space representation. Au-
thor names in a block are randomly split, and 50% is used for
training, and the other 50% is used for testing. Given train-
ing examples of author names labeled either YES (e.g., “J.
Ullman” and “Jeffrey D. Ullman”) or NO (e.g., “J. Ullman”,
“James Ullmann”), the SVM creates a maximum-margin hy-
perplane that splits the YES and NO training examples. In
testing, given the SVM classifies vectors by mapping them
via kernel trick to a high dimensional space where the two
classes of equivalent pairs and different ones are separated by
a hyperplane, and the corresponding similarity is obtained.
For the SVM prediction, we use the Radial Basis Function

(RBF) kernel [7], K(xi, yi) = e−γ||xi−yi||2 , (γ > 0), among
alternatives (e.g., linear, polynomial, sigmoid kernels).

String-based Distance Metrics. In this scheme, the
distance between two author names are measured by the
distance between their coauthor lists (thus no training is
needed). That is, to measure the distance between “Dong-
won Lee” and “Lee, D.”, instead of computing dist(“Dongwon
Lee”, “Lee, D.”), we compute dist(coauthor-list(“Dongwon
Lee”), coauthor-list(“Lee, D.”)). Among many possible dis-
tance measures, we used two token-based string distances
(e.g., Jaro and TFIDF ), and two edit-distance-based ones
(e.g., Jaro and JaroWinkler) that were reported to give a
good performance for the general name matching problem
in [6]. We briefly describe the metrics below. For details of
each metric, refer to [6].

Using the terms of Table 2, the four metrics can be defined

as follows: (1) Jaccard(x,y) =
|Tx

⋂
Ty|

|Tx
⋃

Ty| ; (2) TFIDF(x,y) =∑
w∈Tx∩Ty

V (w, Tx)×V (w, Ty), where V (w, Tx)=log(TFw,Ty+

1)× log(IDFw)√∑
w

′ (log(TFw,Ty +1)×log(IDFw))
(symmetrical for V (w, Ty)),

where TFw,Tx is the frequency of w in Tx, and IDFw is the
inverse of the fraction of names in a corpus containing w; (3)

Jaro(x,y) = 1
3
×(

|CCx,y|
|Cx| +

|CCy,x|
|Cy| +

|CCx,y|−XCCx,y,CCy,x

2|CCx,y| );

(4) JaroWinkler(x,y) = Jaro(x, y) + max(|L|,4)
10

× (1 −
Jaro(x, y)), where L is the longest common prefix of x and
y.

Vector-based Cosine Distance. In this approach, in-
stead of using string distances, we use vector distances to
measure the similarity of the coauthor lists. We model the
coauthor lists as vectors in the vector space, each dimension
of which corresponds to a unique author name appearing in
the citations. To measure the distance between two vectors,
v and w, we use the simple cosine distance, an angle between
two vectors, defined as: cos θ = v·w

‖v‖·‖w‖ .

5. EXPERIMENTAL VALIDATION

5.1 Data Sets and Platform
We have gathered real citation data from four different

domains, as summarized in Table 3. Compared to previous
work, all of the four data sets are substantially “large-scale”
(e.g., DBLP has 360K authors and 560K citations in it).
Different disciplines appear to have slightly different cita-
tion policies and conventions. For instance, Physics and
Medical communities seem to have more number of coau-
thors per article than Economics community. Furthermore,
the conventions of citation also vary. For instance, citations
in e-Print use the first name of authors as only initial, while
ones in DBLP use full names. All four data sets are pre-
segmented (i.e., each field of coauthors, title, and venue are
already known to us).

For the sampling technique, we used the implementation
of [11] with a sample S = 64 and a threshold θ = 0.1. For
the supervised learning methods, citations per author are
randomly split, with half of them used for training, and the
other half for testing. For the implementation of Support
Vector Machines, LIBSVM6 was used. For the string-based
distance functions of the unsupervised learning methods, we
used the implementations of TFIDF, Jaccard, Jaro, and
JaroWinkler from SecondString7. Other remaining meth-
ods were implemented by us in Java. All experimentation
was done using Microsoft SQL Server 2000 on Pentium III
3GHZ/512MB.

5.2 Results for MC Problem
Configuration. For this MC problem, we used two DLs
out of four (due to time constraint) as test-beds: DBLP and
EconPapers. For DBLP (which authors know well), we col-
lected real examples with the MC problem: e.g., Dongwon
Lee, Chen Li, Wei Liu, Prasenjit Mitra, and Wei Wang, etc,
and for EconPapers (which authors do not know well), we
injected an artificial “false citations” into each author’s ci-
tation collection. For both data sets, we tested how to find
the “false citations” from an author’s citations (that is, we
had a solution set for both cases). In constructing token
vectors, we used two models, Set and Bag , depending on

6http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
7http://secondstring.sourceforge.net/



Data set Domain # of authors/ # of coauthors per author # of tokens in coauthors per author
# of citations (avg/med/std-dev) (avg/med/std-dev)

DBLP CompSci 364,377/562,978 4.9/2/7.8 11.5/6/18
e-Print Physics 94,172/156,627 12.9/4/33.9 33.4/12/98.3
BioMed Medical 24,098/6,169 6.1/4/4.8 13.7/12/11.0

EconPapers Economics 18,399/20,486 1.5/1/1.6 3.7/3/4.1

Table 3: Summary of data sets. 
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the preservation of the multiple occurrences of the same to-
ken. For testing, we used the weights, α = 0.5, β = 0.3, and
γ = 0.2. As evaluation metrics, we used time for scalability,
and percentage/rank ratio for accuracy (i.e., A false citation
cf must be ranked low in sim(cf , a). Thus, we measured
how much percentage of false citations were ranked in the
bottom 10%, 20%, etc).

Results. First, Figure 5 clearly shows the superior scala-
bility of the sampling-based approach over the baseline one
(about 3-4 times faster), regardless of set or bag models.
Since the time complexity of the sampling-based approach
is bounded by S, which was set to 64, for a large C such as
DBLP, the scalability gap between two approaches further
widens. Second, Figure 6(a) illustrates the accuracy of both
approaches for EconPapers. For instance, when there is a
single false citation cf hidden in the 100 citations, the sam-
pling approach with the bag model can identify cf with over
60% accuracy (i.e., rank=0.1/%=64). Furthremore, when it
can return upto 2 citations as answers, its accuracy improves
to over 80% (i.e., rank=0.2/%=82). Since many tokens in
citations tend to co-occur (e.g., same authors tend to use the
same keywords in titles), the bag model that preserves this
property performs better. Finally, Figure 6(b) shows results
on DBLP using only the bag model. Note that some col-
lection has a mixture of “2” authors’ citations while others
have that of “over 3” authors (e.g., there exists more than 3
authors with the same spellings of “Wei Liu”). Intuitively,
collections with more number of authors’ citations mixed are
more difficult to handle. For instance, when 2 authors’ cita-
tions are mixed, 100% of false citations are always ranked in
the lower 30% (i.e., rank=0.3) using the sampling approach.
However, when more than 3 authors’ citations are mixed,
the percentages drop to mere 35% – it is very difficult to
decipher a false citation when it is hidden in a collection
that contains a variety of citations from many authors. We
leave a solution to remedy this problem as a future work.

5.3 Results for SC Problem
Configuration. Ideally, it would be desirable to apply our
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Figure 6: Accuracy (EconPapers and DBLP).

framework to existing DLs to find all real name variants.
However, given a large number of citations that we aim at,
it is not possible nor practical to find a “real” solution set.
For instance, to determine if “A” is indeed a name variant
of “B”, human experts have to trace it carefully. There-
fore, here, we use synthetic solution sets. Nevertheless, in
practice, we envision that our framework be used as a tool
to assist human experts to narrow down candidate name
variants significantly.

To make solution sets, for each data set, we prepare two
initially-empty lists, X and Y . Then, we pick 100 authors
with substantial number of citations (so that supervised
methods can be trained), and put them into X. For each
of 100 original names, xn, in addition, we create an arti-
ficial name variant, yn. Furthermore, citations of each xn

are randomly split into two sets, and assigned to xn and yn,
respectively (i.e., each name carries half of the original cita-
tions). Finally, to make the disambiguation more challeng-
ing, we dump the entire author names into Y . For instance,
for DBLP test case, there are 100 and 364,377 names in X
and Y , respectively. Then, through the proposed two-step
name disambiguation algorithm, for each name in X, we test
if the algorithm is able to find the corresponding “artificial”
name variant in Y (that we generated and thus know what
it is).
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Figure 7: Accuracy (DBLP).

Note that the way we generate artificial name variants
may affect the performance of sampling. In general, it is
difficult to precisely capture the right percentages of differ-
ent error types in author name variants. For the original
name “Ji-Woo K. Li”, for instance, some of possible error
types are name abbreviation (“J. K. Li”), name alterna-
tion (“Li, Ji-Woo K.”), typo (“Ji-Woo K. Lee” or “Jee-Woo
K. Lee”), contraction (“Jiwoo K. Li”), omission (“Ji-Woo
Li”), or combinations of these. To quantify the effect of
error types on the accuracy of name disambiguation algo-
rithms, we first compared two cases: (1) mixed error types
of abbreviation (30%), alternation (30%), typo (12% each
in first/last name), contraction (2%), omission (4%), and
combination (10%); and (2) abbreviation of the first name
(85%) and typo (15%). The accuracy of the former case
is shown in Figure 7, and that of the latter case is in Fig-
ure 10(a). Note that regardless of the error types or their
percentages, both cases show reasonably similar accuracies
for all seven distance metrics (i.e., 0.8–0.9 accuracy). There-
fore, all subsequent experimentations are done using the lat-
ter case (85%/15%).

Evaluation metrics. To measure how effectively name
variants can be found, we measured the “accuracy” of top-k
as follows. For a name in X, our algorithm finds top-k can-
didate name variants in Y . If the top-k candidates indeed
contain the solution, then it’s match. Otherwise, it is a mis-
match. This is repeated for all 100 names in X. Then, over-
all accuracy is defined as: Accuracy = # of matches

100
. The ac-

curacy was measured for different k values (i.e., k = 1, 5, 10).
For instance, with k = 5 in the DBLP data set, for each au-
thor in X, methods return the top-5 candidate name vari-
ants out of 364,377 authors, and if one of these 5 candidates
is the artificial name variant that we created, then it is a
match. We repeated all of the subsequent experiments for
three window sizes of 1, 5, and 10, and found that accura-
cies with larger window size (k = 10) are about only 10%
higher than those with smaller window size (k = 1). Since
the different is small, in what follows, we present the results
using k = 5.

Results. Figure 8 summarizes the experimental results of
four alternatives using three representative metrics – TFIDF,
Jaccard, and Jaro. In terms of the processing time, 1-N is
the slowest for TFIDF and Jaccard, as expected, due to
its quadratic time complexity (i.e., 100 × 364, 377 times of
pair-wise name comparisons). The other three show similar
performance thanks to the sampling. In terms of accuracy,
both 2-NC and 2-NH shows about 20%-30% improvement,
compared to 1-N and 2-NN, validating the assumption that
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Figure 8: DBLP with k = 1.
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Figure 9: Processing time for Step 2.

exploiting additional information (i.e., coauthor) than the
simple name spelling is beneficial. Since 2-NH shows no
noticeable improvements over 2-NC, in the remaining ex-
periments, we use 2-NC as a default scheme.

Next, we measured the processing time for step 2 alone
(distance measure stage) as shown in Figure 9. In general,
token-based distance metrics (e.g., TFIDF, Jaccard) outper-
forms edit distance based metrics (e.g., Jaro, JaroWinkler).
This becomes clearly noticeable for DBLP, but not for Econ-
Papers for its small size. In addition, SVM tends to take
more time than the others since the hyperplane needs to be
split in succession due to SVM’s binary-classifiers.

Figure 10 summarizes the accuracies of our proposal for
all four data sets (with k = 5). In general, the distance met-
rics such as the SVM, cosine, TFIDF and Jaccard perform
much better than the others. For DBLP data set, most dis-
tance metrics achieved upto 0.93 accuracy, finding most of
100 name variants out of 364,377 candidates. For e-Print
data set, the accuracy drops down, except the SVM, and
for BioMed data set, it gets worse (especially for Jaro and
JaroWinkler).

The accuracies of DBLP and e-Print data sets are better
than that of BioMed data set. The poor performance of
BioMed case is mainly due to the small number of citations
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 Figure 10: Accuracy (k = 5).

per authors in data set. Since 2-NC scheme is exploiting
coauthor information of the author in question to find name
variants, the existence of “common” coauthor names is a
must. However, in the BioMed data set, each author has
only a small number of citations, 1.18, on average, and only
small number of coauthors, 6.1, on average, making a to-
tal number of coauthors as 7.19 = 1.18 × 6.1 (assuming all
coauthors are distinct). Therefore, for two arbitrary author
names x and y, the probability of having “common” coau-
thors in BioMed data set is not high. On the other hand, for
the e-Print data set, the average number of citations (resp.
coauthors) per author is higher, 4.27 (resp. 12.94), making a
total number of coauthors as 55.25 = 4.27× 12.94 – roughly
8 times of the BioMed data set.

In general, Jaro or JaroWinkler method in step 2 gave
poorer accuracy than the others. Since they are edit-distance
based methods that are heavily affected by the number of
transpositions, as the length of string to compare increases
(in 2-NC, it is a long coauthor string to compare), its error
rate increases as well. In the e-Print data set, the accuracies
are lower, compared to those of DBLP. This is because most
of citations in e-Print data set use abbreviation for the first
name of authors. Since the sampling technique uses TFIDF
for weighting tokens, common tokens like abbreviated first
name (e.g., “E.” or “P.”) would have lower weight via IDF,
negatively affecting matching process.

6. CONCLUSION
Two interesting and practical problems – Mixed Citation

and Split Citation – are formally introduced and their so-
lutions are explored. Since both problems commonly occur
in many of the existing bibliographic digital libraries, it is
important to devise effective and efficient solutions to them.
By utilizing one of the state-of-the-art sampling-based ap-
proximate join techniques, our solutions are scalable yet
highly effective. Furthermore, our proposals exploit asso-
ciated information of author names (e.g., coauthors, titles,
or venues) than names themselves, achieving 90-93% accu-
racy overall.

As to future direction, in addition to comparing ours against
others (e.g., [2, 22]), we plan to apply our framework to other
domains (e.g., address, movie) to test its generality.
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