
A Big Data Management System for Energy Consumption Prediction
Models

Wonjin Lee∗

Dept of Computer Science

Kyonggi University

Byung-Won On†

Dept of Statistics and Computer Science

Kunsan National University

Ingyu Lee‡

Smart Grid Research Center

Advanced Institutes of Convergence Technology

Jungin Choi§

Smart Grid Research Center

Advanced Institutes of Convergence Technology

ABSTRACT

In this work, we develop a prototype about a big data management
system for storing, indexing, and searching forhuge-scale energy
usage data. Rather than existing, commercial relational databases
such as Oracle and IBM-DB2, this system is able to provide us with
high availability and performance at low cost. It is also able to man-
age unstructured data and store big data in distributed environment.
In addition, using data access APIs, target data is quickly retrieved
from our proposed system. To utilize our prototype system, we also
propose an energy consumption prediction model based on penal-
ized linear regression-based map/reduce algorithms. Then, we ex-
ploit discriminate features with respect to time stamp. Finally, given
a time stamp (e.g., 2014-01-05 12:01:08), our proposed learning
model will give us a predicted value about the energy usage (e.g.,
90 watt) at that time. According to our experimental results ob-
tained from about 7.5 million records, each of which consists of an
energy usage and time stamp during three months in 2014, it turns
out that our prediction model can predict real values that are very
close to actual energy usage at that time, and is about 1.72 times
faster than in a single machine.

1 INTRODUCTION

Big data is too huge and complex to process using current database
management system tools. With the advent of new technologies
such as smart devices, social networking service, and cloud com-
puting, data, regardless of transaction data or unstructured data
(e.g., location information, short messages, text, friendship links,
etc.), have been created and stored anytime and anywhere. Accord-
ing to the recent report [10], the total size of data in the world is
1.8× 1021 Bytes in 2011. The amount of data has been rapidly
increased in two times per year, and further we expect that it will
be about 44 times in 2020 than now. In May 2011, Mckinsey &
Company pointed out that big data will become the next frontier
agenda for innovation, competition, and productivity. If big data
technology is applied to industries such as automobiles and shop-
ping malls, it can help both profit-making and job creation. As
part of this effort, the recent study is to apply big data technology
(e.g., big data collection, integration and cleaning, databases for
managing big data, and data mining and visualization) to the field
of energy usage management and energy efficiency. In general, it
is reported that big data tend to have four properties: volume, ve-
locity, variety, and complexity. The volume stands for bulky data

∗e-mail: ckask12@kyonggi.ac.kr
†e-mail: bwon@kunsan.ac.kr, Corresponding Author
‡e-mail: inlee@gmail.com
§e-mail: drjichoi@gamil.com

– e.g., larger than a few hundreds Giga Bytes. The others mean
real-time data creation, unstructured data, linked databases, respec-
tively. If a given data has at least two properties, we can view such
a data asBig Data. In case of energy usage data (power data in
short), we can say that it is one of big data because it has two prop-
erties – volume and velocity. A large number of sensors are located
in houses, buildings, factories, and the other places. Sensors col-
lect energy usage data in near real-time. Currently, to manage this
energy data, commercial relational database management systems
such as Oracle and IBM-DB2 have been widely employed in indus-
trial complex. However, the data coverage of such database tools
is a few hundreds Giga Bytes at most. In addition, it is so hard to
support high availability with a low budget. It should also provide
us with high performance. Nowadays since the amount of data is
rapidly increased and stored to cloud servers, available disk space
should be easily added to the servers at low cost. It is also not effec-
tive to use the existing relational databases to manageunstructured
data1.

In this paper, we first propose a big data management system for
managing large-scale power data. The size of data that we consid-
ered is about 4 Tera Bytes. The aim of our research is to present
how to build such a big data management system. Our proposed
system consists of a cluster infrastructure, automatic data collec-
tion, data loading to a distributed file system, a distributed database
for managing large-scale power data, and data access APIs. We
designed and implemented our prototype system to validate our ap-
proach in which big data technology can be effectively applied to
the energy efficiency domain. In our system, large-scale power data
are well indexed and stored in a distributed database. Further, us-
ing data access APIs, end-users can quickly search for target data
from our proposed system. This system also provides us with high
availability as well as high performance with a low budget. And
it will be able to manage unstructured data well unlike the exist-
ing commercial database management systems such as Oracle and
IBM-DB2.

In addition, to utilize our prototype system, we address an en-
ergy consumption prediction problem. We first develop a prediction
model based on a least square linear regression-based map/reduce
algorithms. Then, after exploiting 32 discriminate features with re-
spect to time stamp, we make machine learning with the features
using training sets. Finally, we show the effectiveness of our pre-
diction model using test sets. In our work, given a time stamp –
e.g., 2014-01-05 12:01:08, our proposed model will give us a pre-
dicted value about the electricity usage (e.g., 90 watt) at that time.
In our experiments, we used about 7.5 million records consisting of
pairs of (electricity usage, time stamp) during three months – from
January until March 2014. Our experimental results validate that
our prediction model works effectively but yet efficiently. For the

1It is known that about 90% of data created in recent time is unstructured
data.



Figure 1: The flow chart of data collection in our system.

detail, we will discuss the experimental results in Section 3.
This paper consists of the followings. Section 2 describes de-

tails of the proposed prototype system for managing big data about
energy usage domain. We also describe empirical results on our
energy consumption prediction model in Section 3. Subsequently,
Section 4 describes existing methods related to our proposal. Con-
cluding remarks and future plans are followed in Section 5.

2 MAIN PROPOSAL

2.1 Big Data Management System for Power Data

2.1.1 Collection of Power Data

In our context, power data means theelectricity usage per 15
minutesfrom four industrial complex in Korea. Those are Si-
hwa machinery-industrial complex, Gwangju circulation market,
Gwangju tech valley, and Incheon circulation market. In Sihwa
machinery-industrial complex, there are 392 sensor devices from
which power data have been created in real time. Similarly, there
are 216, 440, and 824 sensors in the other complex, respectively. A
gateway collects and aggregates these power data from 50 sensors
in each industrial complex. Then, it sends the aggregated power
data to a data portal server. Since each complex has one data portal
server, there are four data portal servers in our system. Finally, the
aggregated power data are stored to PostgreSQL database in each
data portal server. Since PostgreSQL is a relational database man-
agement system, we are unable to store the power data in Hadoop
Distributed File System (HDFS) in person. To address this prob-
lem, we use Sqoop open source tool [1]. Using Sqoop, all of the
power data in four data portal servers are automatically stored in a
distributed database management system such as HBase in our big
data management system. We will also describe the detail of HBase
in Section 2.1.4. Until now, the volume of data in our big data man-
agement system is about 4 Tera Bytes (TB) and these power data
have been appended to our system. Figure 1 shows the flow chart
of collecting energy usage data in our system.

2.1.2 Cluster Architecture

Since power data such as electricity usage per 15 minutes in a good
many buildings and factories are huge, such data are unlikely to
be stored in a single machine. A cluster system, as a standard ar-
chitecture for such problem, has been widely used in numerous in-
stitutes and companies these days. In general, cluster systems are
defined as a cluster of general-purpose computers in which they are
connected each other via commodity network such as Ethernet and
each machine is based on Linux operating systems. Recent cluster
systems have about 16∼ 64 nodes per rack and any pair of nodes
in a rack is supported by 1 Gbps physical layer. In addition, 2∼
10 Gbps backbone is set up between racks. In 2011, it was known
that Google had 1 million machines [10]. Given a big data that is
unable to be stored in a single machine, it should be first divided
into pieces of data. We call each piece of data either “chunk” or
“block.” The size of each block is about 64M bytes or so. Each
block should be stored in a particular node within a cluster system.
Compared to processing data in a single machine, this procedure is
fairly challenging because of the following questions:

Figure 2: A screen-shot image about our cluster system.

1. How to distribute computation within the cluster system?

2. How to make it easy to write distributed programs?

3. How to handle if some machines fail?

For instance, it is known that a computer may be working nor-
mally during three years. If our clustering system consists of 1,000
nodes, it is expected that one node fails every day. In the end, we
are no longer able to use pieces of data that have stored in the failed
node. To cope with this issue, a block is stored multiple times to
different nodes within the cluster system for reliability. In addition,
it will take time to copy data over a network. Therefore, if blocks
are stored in a node, all of the blocks arelocally processed in the
node. We call it a “map” task. For example, let us suppose that a file
is divided into ten blocks, and then each block is stored in a node.
Thus each node has a block in it. Next, a map task is executed in
each node. Then, the results of ten map tasks are aggregated to only
a few nodes within the cluster system. For instance, the ten results
are sent to one node in which a “reduce” task carried out, perform-
ing global processin order to provide us with a final result. This
map/reduce model will be able to reduce network traffic within the
cluster system. Furthermore, the communication interface between
map and reduce tasks is a pair of key and value. This approach will
make it easy to write programs in parallel. Finally, the cluster sys-
tem provides us with global name space so that end-users properly
appreciate that the cluster system acts as a single machine. They
even do not know that a big file is divided to multiple chunks of
entire data and to see which machine includes particular pieces of
data.

In our big data management system, to support this distributed
environment, we first constructed a cluster system as shown in Fig-
ure 2. By and large, our cluster system consists of amanager node,
a master node, and tendata nodes. Since this cluster system has
one IP address which corresponds to the MAC address of the man-
ager node, clients outside the cluster system can only communicate
with the manager node. The master node controls the cluster sys-
tem, whereas data nodes mainly store blocks in them. Each node is
a workstation server having Intel Xeon 2.20GHz CPU and six cores
per CPU. We can say that our system will eventually have 66 nodes
if we view one core as a data node. Each node also has 8TB Hard
Disk Drive (HDD) so the total size of storage space in the system
is 88 Tera Bytes (TB). The master node has 32GB main memory,
while the size of main memory is 24GB main memory in the data
nodes.

2.1.3 Distributed File System

We used Linux operating system (e.g., CentOS release 6.4) on each
node in the cluster system. In addition, to support the distributed en-
vironment, we installed Hadoop Distributed File Systems (HDFS)
and MapReduce Framework on each machine in the cluster sys-
tem [1]. In particular, we installed and configured Hadoop name
node daemon on the master server and Hadoop data node daemon
on each data node. Hadoop is a open source project regarding



Figure 3: Hadoop distributed file system.

High Availability Distributed Object-Oriented Platform. Overall,
Hadoop ecosystem is composed of data storage, data processing,
data access, management, and applications. In the data storage
level, there are HDFS and HBase. HDFS is a distributed file sys-
tem, while HBase is a NoSQL (Not Only SQL) database based on
HDFS. HDFS plays an important role in posing data nodes in the
cluster system as a single storage device. End-users do not prop-
erly appreciate that a big file is automatically divided into blocks
and then the blocks are stored in proper nodes, considering network
traffic and load balancing of data nodes in the cluster system. The
MapReduce framework is in the data processing layer. Through this
framework, programmers can write distributed programs using Java
which are executed in parallel. However, Hadoop also supports the
very users that are not familiar with Java, to access big data. Hive,
Pig, and Avro are the data access modules. For example, a user can
write a simple program using query language like query clauses in
MySQL (e.g., SELECT-FROM-WHERE clauses). Then, Hive au-
tomatically translates the query clause to a sequence of map and
reduce tasks so as to get or put data to HDFS. The automatically-
generated map and reduce tasks are executed in parallel on multi-
ple data nodes within the cluster system. In the management level,
there are Zookeeper and Chukwa. Zookeeper is required for dis-
tributed configuration service, synchronization service, and naming
registry for large distributed systems. In the meanwhile, Chukwa
gives us a service to quickly search for target data. Finally, as ap-
plications, there are machine learning tools like Mahout, RHadoop
for data mining and visualization, data warehousing tools, and so
on.

In the following section, we will discuss the detail of HDFS
which consists of a name node and data nodes in the cluster sys-
tem.

Name Nodes: Hadoop name node daemon is installed on the
master node in the cluster system. The name node divides a file
to blocks and then send blocks to particular data nodes. It always
keeps an eye on the number and size of blocks stored in each data
node, and then determines proper data nodes. Next, the name node
usually stores meta data about where blocks are stored. In addi-
tion, for reliability, a block is replicated three times (by default)
and stored in different data nodes within the cluster system. In our
system, since we used Hadoop 2.2, we can avoid the failure of the
entire system. In Hadoop 1.2, there is only one name node physi-
cally. If the name node fails, we can no longer use the system. On
the other hand, in our big data management system, there are two
name nodes. One is active and the other is stand-by. In our system,
the tenth data node is also set up to be the stand-by name node.

As shown in Figure 3, the active name node regularly writes edit
log to the shared disk called the journal node. Then, the stand-by
name node gets them from the journal log. When the active name
node fails for any reason, the stand-by name node detects the failure
of the current, active name node through Zookeeper, and then the
stand-by name node is switched to the active name node instead
of current name node. This failover process keeps the name node
going in a seamless way.

Data Nodes: Hadoop data node daemon is located on each data
node in the cluster system. In general, each data node has a few
thousands blocks, each of which contains about 64 Mega Bytes
(MB) on average, and has a few hundreds Giga Bytes (GB) in it.
The data nodes usually execute map and reduce tasks. A map task
is executed with blocks stored in the node. Then, the results of map
tasks are combined to only a few data nodes. Then, reduce tasks
perform global processes to provide us with a final result. Often,
data nodes merge multiple blocks when the number of blocks is
increased to improve an efficient search service. In addition, to im-
prove performance, blocks are often split when the size of the block
is large.

In particular, there are two main daemons on each data node:
node managers and application masters. These daemons are usually
communicating with the resource manager running on the active
name node. The resource manager is responsible for scheduling
tasks as well as allocating resources like tasks. It regularly com-
municates with the node manager using heart bits to check if the
node manager is still alive or not. The node manager estimates the
size of context, meaning each data node’s memory buffer including
a sequence of tasks. If the node manager determines that a data
node has enough context to execute tasks allowed by the resource
manager, it asks a corresponding application master to perform the
task. Application masters manage tasks inside the context of a data
node, and they also ask the resource manager to obtain tasks to be
executed.

2.1.4 Distributed Database

We installed Hadoop Database (HBase) in [1]. HDFS is enough
if data is rarely updated in place and read/append operations are
mainly used in an application. However, HBase is needed when
random updates are common in another application. Unlike the
existing relational database management systems such as Oracle,
IBM-DB2, MySQL, etc., HBase is one of non-relational database
management systems. We call it NoSQL database. This means that
HBase does not support join operations. Instead, the aim of HBase
is to sort large-scale data by time stamp and to quickly search for
particular data. In addition, since NoSQL databases do not have
any relational schema, it is easy to manage unstructured data such
as text data. In addition, they have been designed to satisfy two
properties: partition tolerance and either consistency or availabil-
ity. Therefore, NoSQL databases may not perfectly guarantee the
integrity of data. However, without the cease of service, data stor-
age space can be added to NoSQL databases so big data is easily
stored in the database without paying an enormous sum of money.
Unlike popular NoSQL databases such as Big Table, Cassandra,
MongoDB, REDIS, etc., HBase is especially based on Hadoop Dis-
tributed File Systems. In other words, data is actually stored in
HDFS. On the other hand, HBase has occupied a buffer space in
memory. The buffer contains popular blocks that are frequently
used in some application. If the application continues to initiate
update operations, HBase first goes to the buffer, finding the corre-
sponding blocks and then updating the block. If the buffer is full,
proper blocks are stored to HDFS by a certain buffer scheduling
policy (e.g., LRU).

In practice, HBase is composed of HMaster and HRegion server
daemons. HMaster is running on the active name node. The HMas-
ter usually stores meta data about where blocks are stored. On the
other hand, the HRegion servers are located in data nodes. Each
HRegion server has a buffer, called MemStore, that includes a cou-
ple of HRegions. A HRegion is corresponding to a relation table in
RDBMS. As shown in Figure 4, each HRegion consists of row-key,
column-family, and time-stamp. A row-key has a couple of column-
family that has a set of columns. HBase is also based on Zookeeper
that controls HRegion servers. If certain HRegion servers fail in
HBase, Zookeeper starts to recover the HRegion servers which are



(a) HBase system architecture (b) Region table type

Figure 4: HBase: Distributed database in Hadoop.

out of order.

2.1.5 Data Access APIs

In the final step, to search for particular data and then to get them,
we implemented a web page in which users create queries (e.g.,
create or delete tables, insert records, etc.) and get records, which
they want, stored in our big data management system. We used
JDBC-like libraries (as .jar files) with which HBase provides us.

2.2 Energy Consumption Prediction Model

In this section, the goal of our research is to propose an effective en-
ergy consumption prediction model. The prediction model is based
on linear regression model.

2.2.1 Linear Regression Model

Given a matrixX = (X1, ...,Xp) = (Xi j )n×p ∈ Rn×p and response
Y, we build a least square linear model by minimizing the Residual
Sum of Squares

RSS(α,β ) = (Y−α1−Xβ )T(Y−α1−Xβ ) (1)

In Eq. 1,α andβ stand for intercept and coefficients, andX andY
indicate an independent variable and a dependent one. According to
the recent study in [13],RSS(α,β ) can be summarized as follows.

RSS(α,β ) = T1 +T2 (2)

T1 = YTY−nȲ2−2(YTX−nȲ(X̄1, ..., X̄p))D−1
β (3)

T2 = β
TD−1(XTX−n(X̄1, ..., X̄p)T(X̄1, ..., X̄p))D−1

β (4)

For RSS(α,β ) in Eq. 2, the values ofn, YTY, XTY, Ȳ, X̄i , and
XTX should be computed in parallel using MapReduce framework
in our big data management system. Table 1 shows our MapReduce
algorithm based on penalized linear regression.

Map Task for each sample (x, y)
key = random(0,1,...,k-1)
calculate value ={n, YTY, XTY, Ȳ, X̄i , XTX}
emit (key, value)

Reduce Task for each (key, value list)
chunk = aggregate whole value list
emit(key, chunk)

Table 1: The MapReduce algorithm for penalized linear regression

2.2.2 Feature Selection

For our experiments, we collected power data between January
2014 and March 2014. The power data is a set of records, each of
which is a pair of electricity usage per 15 minutes and time stamp.
An example of records is (electricity usage = 90 watt, 2014-01-05
12:01:08). The number of records is about 7,500,000 during the
three months. From all of the records, we exploited a total of 32
features, each of which is day of the week, national holiday, or
24 hours. For instance, let us suppose that a given time stamp is
2014-01-05 12:01:08. Since 2014-01-05 was Sunday, the ‘Sunday’
feature is 1, while the ‘Monday’ feature is 0. Similarly, the other
day of week features are 0. 2014-01-05 was not a national holi-
day so the ‘national holiday’ feature is 0, and the feature between
12:00 and 13:00 is 1, and 0 otherwise. In this way, a feature vector
with respect to 2014-01-05 12:01:08 is{1,0,0,0,0,0,0,0, ..., 1, ...},
where the first and 20-th features are 1, meaning Sunday and the
time interval between 12:00 and 13:00.

Finally, we grouped all of the records into six groups. One is
a group of records related to Sunday and national holiday in Jan-
uary 2014. We denote this dataset by 2014-01-Holiday. Another
is a group of records including weekdays in January 2014. We
also label this data set as 2014-01-Weekdays. In this way, we gen-
erated the other four data sets – e.g., 2014-02-Holiday, 2014-02-
Weekdays, 2014-02-Holiday, and 2014-02-Weekdays.

2.2.3 Prediction

For each data set, we constructed the linear regression model as
discussed in Section 2.2.1. Then, we estimated intercept and coeffi-
cient valuesα andβ using the linear regression model. Next, given
a feature vector in each test set, computeY indicating the predicted
value of the electricity usage.

Y = α +β1X1 +β2X2 + ...+β32X32 (5)

3 EXPERIMENTAL RESULTS

3.1 Demonstration of our Big Data Management System
Figure 5 shows a web browser through which a user can take
a look at some records in our big data management system in-
cluding about 4TB energy usage data which have been collected
in four industrial complex in Korea since 2013. To search
for some energy usage data, users can visit to the web site in
http://147.47.122.219:8080/TestYTCho/index.html. In the main
web page, a user can have a look at the list of tables (HRegions)
which are stored in our big data management system. First of all,
select one of tables. Next, enter a table name for which he or she
wants to search, and then put the number of records to be displayed
in the web page. In Figure 5, the table name is “energledemand”
and the number of rows in the table is 100. Then, press the submit
button. After that, the user can see top-100 records in the ener-
gle demand table. Each record consists of eight fields – charge, de-
mand, pf, rdemand, sgname, ttime, url, and whacc. Charge means



Figure 5: A screen-shot image of query results using Google Chrome web browser.

electric bill. The unit of the field is cent. Demand and rdemand indi-
cate active power and wattless power, respectively. In the third field
in the table, pf is power factor, defined as the ratio of the real power
flowing to the load, to the apparent power in the circuit, and is a di-
mensionless number between -1 and 1. The sgname field contains
gateway names. Ttime is time stamp in the format of YYYY-MM-
DD Hours:Minutes:Seconds. Each url stands for each sensor’s IP
address and port number.

3.2 Results of our Energy Consumption Prediction
Model

Figure 6 shows the results of six data sets – (1) 2014-01-
Weekday dataset, (2) 2014-02-Weekday dataset, (3) 2014-03-
Weekday dataset, (4) 2014-01-Holiday dataset, (5) 2014-02-
Holiday dataset, and (6) 2014-03-Holiday dataset. The 2014-01-
Weekday dataset means pairs of records, each of which consists
of active power per 15 minutes and time stamp (YYYY-MM-DD
Hours:Minutes:Seconds) which were created in weekdays around
January 2014. On the other hand, the 2014-01-Holiday dataset in-
cludes all records that were created in only holidays during January
2014. In each dataset, we can see three lines in color. The orange
line stands foractual, active power. The blue line means the ac-
tive power valuepredictedby our prediction model. The green line
indicates the difference value between the actual, active power and
the predicted one. If the green line lies close to zero, it implies
that predicted values are closely similar to corresponding actual,
active power values. Thus, we can validate the effectiveness of our
prediction model based on linear regression-based map/reduce al-
gorithms. On the whole, for all of the six datasets, it is consistently
observed that our predicted values are very similar to actual, ac-
tive power values. Note that the difference is insignificant. We also
measured both mean difference and standard deviation values about
the six datasets, and hence reported in Table 2. In all of the datasets
that we used (i.e., about 7,500,000 records between January 2014
and March 2014), the maximum active power value is 6,000,000,
while the minimum value is 1,000,000. The difference between
max and min values is 5,000,000. According to Table 2, the av-
erage difference between actual and predicted values is less than
500,000 that is much less than that between max and min values
in actual power data. However, unexpectedly, we can also observe
that the difference between actual and predicted values is higher in
all holiday datasets, compared to that of all weekday datasets.

Finally, we measured the execution time of our prediction model
to process about 7,500,000 records on a single machine and our

Dataset Standard deviation Mean difference
2014-01-Weekdays 373,149 124,774
2014-02-Weekdays 507,200 134,495
2014-03-Weekdays 320,022 100,843
2014-01-Holidays 3,416,968 527,897
2014-02-Holidays 3,479,047 471,278
2014-03-Holidays 3,035,376 459,588

Table 2: The mean difference and standard deviation values between
actual and predicted values in the six datasets.

cluster system. The running time is 5 minutes 10 seconds on the
single machine, whereas that is 3 minutes on the cluster system. If
we execute our model on the cluster system, the running time is
about 1.72 times faster than that on the single machine.

4 RELATED WORK

Lai et. al. [9] integrated appliance and activity recognition mech-
anism for IoT energy management system. The authors presented
a management service layer for the recognition of current house-
hold appliances. The latter not only establishes communication
services among various appliances, but also deduces human activi-
ties conducted for context data using Naive Bayes from the electric
appliances in use and the variation of its states. The authors fo-
cus on studying the characteristics of the house appliances. Dejan
et. al [6] proposed an architecture, describing its key components
and depicting in scenarios its usage with the goal of enabling fa-
cility management which enables informed business decisions by
following enterprise strategies as well as considering the volatil-
ity of the available energy excess or shortage. The authors’ main
contribution is to provide the architecture and concept of the en-
ergy efficiency in smart grid era. In [5], the authors experiments
the performance of the different levels of energy data aggregation.
Thousands of smart meters are aggregated, by usage of the col-
lected energy readings from a real-world trial. Using a selected
data set, the traditional database system (row-based) performance
is compared to the emerging column-based approach in order to
assess the suitability for real-time analytic in such scenarios. The
main contributions of the authors is to show that the in-memory
column-based database system is more suited to aggregate energy
data. According to the authors in [11], reducing forecast errors can
be achieved by clustering prosumers, but prediction algorithms are
still sensitive to smaller levels of aggregation. The authors also in-



(a) 2014-01-Weekday dataset (b) 2014-02-Weekday dataset

(c) 2014-03-Weekday dataset (d) 2014-01-Holiday dataset

(e) 2014-02-Holiday dataset (f) 2014-03-Holiday dataset

Figure 6: Results of our energy consumption prediction model.

vestigated the role of distributed storage in residential areas as well
as a mean towards creating groups of prosumers that feature better
forecast energy behavior. Several other researches have been done
related to the energy big data systems and several companies [2, 4]
provide services on energy big data analysis. However, as authors
aware, this is the first paper to gather and analyze the real massive
power data and to study the usage characteristics based on the tim-
ing properties. Our prediction model shows a decent performance
and can be used to plan an efficient energy usage plan.

5 CONCLUDING REMARK AND FUTURE WORK

In this paper, we propose a proof-of-concept prototype about a big
data management system for managing large-scale energy data. For
this, we present how to build this system in distributed environ-
ments. Our proposed system gives to us better ideas to high avail-
ability as well as high performance at low cost. These points of
our system are better than existing, commercial databases like Or-
acle and IBM-DB2. To utilize our proposal, we also tackled a en-
ergy consumption prediction problem that is very significant prob-
lem to the field of energy efficiency. In our approach, we propose
novel prediction model based on penalized linear regression-based
map/reduce algorithms. Our model will be executed in parallel on
the big data management system. Given a particular time stamp,
our learning model will predict the active power value. Then, in our
experimental section, we showed the effectiveness of our model. In
addition, our learning model is about 1.72 faster than that on a sin-
gle machine.

As our future direction in our research, above all, we have a plan
to add about 20 data nodes to the current system. For better energy
consumption prediction, we would like to exploit various features
rather than time stamp-based features. In addition, we will extend
our linear regression-based map/reduce algorithms to various ma-
chine learning algorithms such as SVM, Decision Tree, and so on.
Finally, we will improve the user interface of our current prototype
system.

ACKNOWLEDGEMENT

This research was supported by the Energy Efficiency & Resources
of the Korea Institute of Energy Technology Evaluation and Plan-
ning (KETEP) grant funded by the Korea Government Ministry of
Trade, Industry & Energy (No. 20132010101800).

REFERENCES

[1] Apache Software Foundation, “Hadoop 2.2”, http://hadoop.apache.org/ (2014)
[2] AutoGrid, http://www.AutoGrid.com (2014)
[3] Berges, M., Goldman, E., Matthews, H., and Soibelman, L., “Training load

monitoring algorithms on highly sub-metered home electricity consumption
data”, Tsinghua Science and Technology 13, Supple, 0 (2008), pp.406–411

[4] Big Data Energy, http://www.bigdataenergyservices.com (2013)
[5] Ilic, D., Karnouskos, S., and Wilhelm, M., “A comparative analysis of smart

metering data aggregation performance”, IEEE International Conference on
Industrial Informatics, Bochum, Germany, July 2013

[6] Ilic, D., Karnouskos, S., Silva, P., and Detzler, S., “A system for enabling fa-
cility management to achieve deterministic energy behaviour in the smart grid
era”, International Confernce on Smart Grids and Green IT systems (Smart-
Green 2014), 2014

[7] Karnouskos, S., Colombo, A., Lastra, J., and Popescu, C., “Towards the energy
efficient future factory”, IEEE International Conference on Industrial Informat-
ics (INDIN 2009)

[8] Karnouskos, S., Ilic, D., and Silva, P., “Assessment of an enterprise energy ser-
vice platform in a smart grid city pilot”, International Conference on Industrial
Informatics (INDIN), 2013

[9] Lai, C., Lai. Y., Tianruo, L., and Chao, H., “Integration of IoT energy man-
agement system with appliance and activity recognition”, IEEE International
Conference on Green Computing and Communications (GreenCom 2012), DOI
10.1109

[10] Leskovec, J., “Mining massive datasets”,
http://web.stanford.edu/class/cs246/slides/01-mapreduce.pdf (2013)

[11] Lic, D., Karnouskos, S., and Silva, P., “Improving load forecast in prosumer
clusters by varying energy storage size”, IEEE PowerTech 2013, June 2013

[12] Santaferraro, J., “Offloading analytics”, Business Intelligence Journal,
17(4):43–48 (2012)

[13] Yang, K., “Simple one-pass algorithm for penalized linear regression with cross-
validation on MapReduce”, e-Print arXiv:1307.0048 (2013)

[14] Yin, J., Kulkarni, A., Purohit, S., Gorton, I., and Akyol, B., “Scalable real time
data management for smart grid”, Middleware Industry Track Workshop 2011


