
Google based Name Search: Resolving Mixed Entities on the Web

Byung-Won On∗

School of Information Systems
Singapore Management University

bwon@smu.edu.sg

Ingyu Lee
Sorrell College of Business

Troy University
inlee@troy.edu

Abstract

When non-unique values are used as the identifier of enti-
ties, due to their homonym, confusion can occur. In particu-
lar, when part of “names” of entities are used as their iden-
tifiers, the problem is often referred to as amixed entity res-
olutionproblem, where goal is to sort out the erroneous en-
tities due to name homonyms (e.g., if only last name is used
as an identifier, one cannot distinguish “Vannevar Bush”
from “George Bush”). Especially, a mixed entity resolu-
tion problem is common on the Web data. For instance, to
search for a product name (e.g., Oracle) in Google, there ex-
ist a mixture of web pages due to the name homonyms (e.g.,
Oracle Database, Oracle Audio, Oracle Academy, etc.). In
this paper, we present a practical system for resolving such
mixed entities on the Web. For development of such a sys-
tem, we propose a web service based interface, an unsu-
pervised clustering scheme, and cluster ranking algorithms.
In particular, since the correct number of clusters is often
unknown, we study a state-of-the-art unsupervised cluster-
ing solution based on propagation of pairwise similarities
of entities. Our claim is empirically validated via exper-
imentation, showing that our approach outperforms main
competing solution.

1 Introduction

According to recent U.S. Census Bureau reports, about
30% queries include person names and 100 million persons
share only about 90,000 person names. This statistical data
says that a search result is a mixture of web pages of dif-
ferent people with the same name spellings. In general, this
problem is known asMixed Entity Resolution Problemfor
named entity search tasks (e.g., product or person names)
on the Web [3]. To demonstrate the need for a solution to
mixed entities, let us present a real case drawn from Google,
shown in Figure 1. In the search result, there exists a mix-

∗Work was done while the author was at the University of British
Columbia.

Tom
Mitchell

CMU

Tom
Mitchell

GIS
Tom

Mitchell
Musician

Tom
Mitchell
Musician

Tom
Mitchell

Computer

Figure 1. A snippet of Google which shows the
ranked links of web pages associated with the
keyword of “Tom Mitchell”.

ture of web pages of a professor at CMU, an actor, a hockey
player, a historian, a Jazz guitarist, etc., who have the same
name spellings of “Tom Mitchell”. Actually, there are 37
different Tom Mitchells among 100 top ranked web pages
as illustrated in Table 2. Furthermore, mixed entities com-
monly occur on the Web when we are searching for a prod-
uct by name. For instance, if a user searches for a product
name such asOracle, she also finds different web pages of
Oracle Database, Oracle Audio, Oracle Academy, and so
forth.

In this case, unlike traditional search engines, we focus
on developing an effective system that identifies mixed en-
tities such as person or product names (as a query) on the
Web, and then displays its query result containing ranked
groups, each of which contains URL links and corresponds
to each different entity with the same description. However,
it is non-trivial to resolve mixed entities due to the following
four challenges. First, since the number of clusters within
top-k ranked web pages is not given a priori, we are unable
to take advantage of supervised clustering schemes such as
K-means andK-spectral clustering. Second, skewed clus-

ter sizes make it hard to group web pages correctly. Next,
the running time of clustering web pages should be so ef-
ficient that users do not feel bored, waiting search results
for a long time. Finally, a set of clusters is required to be
re-ranked. For instance, take a look at the name data set
of Tom Mitchell in Table 2, where we observed that 92 top
ranked web pages are grouped to 37 clusters of a CMU pro-
fessor, a hockey player, a historian, and so on. In the next
step, the 37 clusters should be ranked in a certain order. In
other words, the CMU professor cluster is first ranked, and
next the historian cluster is ranked, and in turn. To cope with
these challenges, we develop an effective framework for re-
solving mixed entities on the Web. In our work, we propose
a web service based interface, an unsupervised clustering,
and cluster ranking schemes, shown in Figure 2. In partic-
ular, we devise an unsupervised clustering technique using
similarity propagation.

The rest of this paper is organized as follows. In Section
2, we formally define our problem. In Section 3, we intro-
duce the overview of our framework, followed by discussion
of our main ideas. In Section 4, we report preliminary ex-
perimental results. In Section 5, we discuss the background
and related work. Finally, some discussion and conclusion
follow in Section 6.

2 Problem Definition

Formally, the mixed entity resolution problem in our set-
ting is defined as follows1:

Given a set of mixed entitiesE={e1, ...,ep, ...,eq,
...,eN} with the same name descriptiond, groupE
into K disjoint clustersC={c1, ..., cK} such that
entities{ei

p, ..., ei
q} within each clusterci belongs

to the same real-world group.

Clustering is the key part for this task. More specifically,
we view this problem as an unsupervised hard clustering
problem. In this problem, we observed that the majority
of input pages map to a single individual, although there are
a few that are assigned to multiple individuals sharing the
same name. Hence, we view the problem ashard cluster-
ing, assigning input pages to exactly one individual, so that
the produced clusters do not overlap. Hard clustering algo-
rithms can be classified as either partitioning or hierarchical
clustering. Hierarchical agglomerative clustering approach
generates a series of nested clusters by merging simple clus-
ters into larger ones, while partitive methods try to find a
pre-specified number of clusters that best capture the data.
For instance, a prior knowledge of the probable number of
clusters must be required inK-means andK-way spectral
clustering algorithms. In particular, note that our problem is

1In our work,E is a collection of web pages andep stands for thep-th
web page.d denotes person or product name.

Web
Browser

servlet
Web

Service
Client

Google
Web Service

Server

Cluster
Ranking

Download
top-k

web pages

Unsupervised
Clustering

Similarity
Measure

Propagating
Similarities

Approximating
of Clusters

Figure 2. System overview.

an “unsupervised” clustering problem. In other words, since
the correct number of clusters is not givena priori in our
problem,Hierarchical Agglomerative Clustering(HAC) al-
gorithms [11], rather than partitive clustering methods, are
employed as a solution to our problem. However, hierar-
chical clustering methods are not able to reallocate entities.
Therefore, it is plausible to be poorly classified in the early
stages of text analysis. In this paper, we study an unsuper-
vised clustering method that is more accurate than HAC al-
gorithms. We will discuss the details in Section 3.4.

3 Main Proposal
Figure 2 illustrates the overall architecture of our system.

To search for a product name (e.g., Oracle), we use Google
web service framework in which Google web service server
provides us with a list of top-k ranked web pages which are
associated with the product name.

Then, we tokenize top-k ranked web pages and each
web page is represented as a vector using TF/IDF weighting
scheme and the similarity of each pair of vectors are com-
puted by TF/IDF cosine similarity measure. Subsequently,
the vectors are grouped into a set of clusters in terms
of oursimilarity-propagation-based unsupervised clustering
method. Finally,K clusters are ranked by one of our cluster
ranking algorithms followed by the search result.

3.1 Web Service based Interface
As shown in Figure 2, our web service client to

Google [6] uses a keyword search in the Google search en-
gine. Since the Google web service supports Simple Ob-
ject Access Protocol (SOAP), which is a technology to al-
low for Remote Procedure Call (RPC) over the web, the
client program creates a SOAP request message that con-
tains a person name entered by a user, and then sends it to
the Google’s web service server. After the client receives a
SOAP response message from the server, it parses the SOAP
response, and then extracts the top-k links. According to the

2

Input: GraphG
Output: # of clusters

For {µ = 0.01;µ ≤ 1;µ = µ + 0.01}
Generate a subgraphGi by removing
links s.t. their link weights≤ µ
numClusi = # of disconnected graph segments inGi

E=(µ,numClusi)
End For
Based on theE sequences, classifies as
Type I (concave), Type II (convex), Type III (linear)
Find the maximum and minimum difference between

numClusi andnumClusi+1 in E
If graph segments{Gi} are in Type I

Return maximum differencenumClusi as cluster #
ElseIf graph segments{ Gi} are in Type II

Return minimum differencenumClusi+1 as cluster #
Elsegraph segments{Gi} are in Type III

Return average of maximum and minimum difference

Figure 3. Algorithm: APPROXIMATION OF CLUS-
TER NUMBERS.

recent study [5], the majority of people only tend to look
into the first returned page (i.e., 10 links) of Google. Thus,
we focus on at mostk = 100 links which would be the
URLs of web pages that contain the keyword.

3.2 Similarity Measure
Web pages corresponding to top-k links are downloaded

in our system. Letep, ti, andT be thep-th web page, the
i-th term in ep, and the total number of distinct terms in
the top-k web pages, respectively.wti

is the weight value
which is associated with the pair (ti, ep), and further docu-
ment vector~vep

= (wt1 , wt2 , ..., wtT
). First, to weight each

termti in ep, wti
= Frequency(ti)

maxtl
Frequency(tl)

× log(N
Nti

), where

Frequency(ti) is the raw frequency of termti in ep; N is
the total number of documents in the system; andNti

is the
number of documents in which termti appears [7]. Then,
the similarity between~vep and~veq is estimated as

sim(~vep , ~veq) =
~vep · ~veq

|~vep | × |~veq |
=

∑T

i=1
wti,ep × wti,eq√∑T

i=1
w2

ti,ep
×

∑T

i=1
w2

ti,eq

. (1)

3.3 Approximating Number of Clusters
Based on our similarity scheme, top-k web pages can be

represented as GraphG, where thep-th web page denotes
Node ep, and the edge weight between nodesep and eq

is the TF/IDF cosine similarity betweenep andeq as dis-
cussed in Section 3.2. In the next step, we need an un-
supervised clustering method to gather similar entities to-
gether. Since the unsupervised clustering generally shows

poor performance, we devise an algorithm of approximately
estimating the number of clusters shown in Figure 3. The
main idea of the algorithm is to gradually disconnect several
edges based on the connectivity between nodes and to ana-
lyze the patterns of segmented subgraph sequences. Assume
Nµi

andNµi+1 are number of subgraphs withµi andµi+1,
respectively. Then, we assume that the number of clusters
are assumed to be near when the difference betweenNµi

andNµi+1 is drastically changed. We observe three differ-
ent types of graph segment sequences with an incremental
threshold valueµ: gradually increasing, gradually decreas-
ing, and staying approximately as a constant. In the grad-
ually increasing sequence (convex), the sequence reaches
the maximum difference when the difference starts to de-
crease. For the gradually decreasing sequence (concave),
the sequence reaches the minimum difference when the dif-
ference starts to increase. Based on this property, our algo-
rithm assumes that the number of cluster will be close to the
maximum difference in the number of subgraph sequences
when it shows concave function, the minimum difference
when it shows convex function, and the average of these two
when it stays approximately as a constant (linear function).

3.4 Similarity Propagation
The similarity sim(~vep

, ~veq
) stands for how well~veq

is suited to be the centroid vector for~vep , defined as
sim(~vep

, ~veq
) = −

∥∥~vep
− ~veq

∥∥
2
. To determine which vec-

tors are centroids and which centroid each vector belongs to,
two kinds of messages are exchanged between vectors. One
is Responsibility R(~vep , ~veq) and the other one isAvail-
ability A(~vep

, ~veq
). More specifically,R(~vep

, ~veq
) indicates

how well suited~veq is to work as centroid for~vep , consid-
ering other centroids for~vep

. R(~vep
, ~veq

) is sent from~vep

to ~veq
. In contrast,A(~vep

, ~veq
) reflects how appropriate it

would be for~vep to choose~veq as its centroid vector, send-
ing from centroid~veq

to~vep
. Initially, A(~vep

, ~veq
) = 0. The

responsibilities are computed by

R(~vep , ~veq) = sim(~vep , ~veq)− max

~v
′
eq

6=~veq

{A(~vep , ~v
′
eq

) + sim(~vep , ~v
′
eq

)}. (2)

The availability updates to see if each candidate centroid
vector would make a good centroid defined as

A(~vep , ~veq) = min{0, R(~veq , ~veq) +

∑
~v
′
ep

∈{~vep ,~veq }

max{0, R(~v
′
ep

, ~veq)}}.

(3)

The self-availabilityA(~veq
, ~veq

) is updated differently
in terms ofA(~veq

, ~veq
) =

∑
~v′ep

6=~veq
max{0, R(~v

′

ep
, ~veq

)}.
This self availability indicates that~veq

is a centroid, based
on the positive responsibilities sent to candidate centroid
~veq from other vectors. Using the above functions, mes-
sages are exchanged between vectors until a high quality

3

set of centroids and corresponding clusters gradually con-
verges. In other words, for vector~vep , the value of~veq

maximizingA(~vep
, ~veq

) + R(~vep
, ~veq

) identifies the vector
that is the centroid for~vep

or the vector itself as the cen-
troid. The time complexity of the similarity propagation is
O(i × K × N), wherei, K, andN are the number of it-
erations, centroid vectors, and entity vectors, respectively.
Details of the method are described in [1].

3.5 Cluster Ranking Algorithms
As the result of our clustering method using similarity

propagation, relevant web pages are clustered to the same
group. For instance, suppose there are four different indi-
vidual persons with the same name spellings, shown in Ta-
ble 1. In the example, the total number of web pages related
to “Tom Mitchell” is 13, where four web pages (i.e.,e1, e2,
e3, ande4), three ones (i.e.,e5, e6, ande7), five ones (i.e.,
e8, e9, e10, e11, ande12), and one web page (e13) are as-
sociated with the professor at CMU, the reporter at CNN,
the musician at Shady record company, and the minister at
Kansas city, respectively. Let us assume that web pages are
ranked by PageRank scores like the third column in Table 1.
The ranking order of web pages in terms of Google PageR-
ank ise1, e5, e10, e6, e7, e9, e8, e4, e12, e2, e11, e3, ande13.
These 13 web pages are clustered to four groups in terms
of our clustering scheme in Section 3.4, and furthermore we
need to re-arrange the four groups in a certain order (like
PageRank). Let us denote this process asrankingclusters.

This is a considerably challenging issue in this paper. For
instance, see the four web pages of “Tom Mitchell” at CMU.
e1 is firstly ranked by Google PageRank algorithm, while
the rest pages are mostly located in bottom –e2 (10-th),e3

(12-th), ande4 (8-th). In this case, it is hard to determine
which position the cluster (labeled as CMU/Prof) should be
ranked in among the four clusters (labeled as CMU/Prof,
CNN/Rep, Shaddy/Mus, and Kansas/Min). To address this
problem, we propose an approach based on the hypothesis
that re-using ranking information generated by Google is
sufficiently effective when we attempt to rank a set of clus-
ters. For this, we consider three different methods as fol-
lows:

• Consider therelative ranking positionsof web pages
per cluster which is defined as

ClusterRankj =

∑
i∈clusterj

PageRanki/N

Nclusterj

(4)

whereClusterj is the number of pages in clusterj and
N is the total number of pages.

• Consider thehighest ranking positionof web pages per
cluster which is defined as

ClusterRankj = min
i∈Clusterj

PageRanki. (5)

Cluster Label Web Page ID Google PageRank
Tom Mitchell e1 1

Professor e2 10
CMU e3 12

e4 8
Tom Mitchell e5 2

Reporter e6 4
CNN e7 5

Tom Mitchell e8 7
Musician e9 6

Shady Records e10 3
e11 11
e12 9

Tom Mitchell e13 13
Minister

Kansas City

Table 1. An example for ranking clusters.

• Consider themedian ranking positionof web pages per
cluster which is defined as

ClusterRankj = median{Clusterj} (6)

Considering that our ranking algorithms compute the
ranks of clusters based on document ranks by Google
PageRank, the result lists of our ranking algorithms would
be analogous to Google’s standard output. However, we ex-
pect that the result lists of our ranking algorithms would pro-
vide users with better presentation. For instance, please see
Tom Mitchell at CMU in Table 1, in whiche1, e2, e3, and
e4 pertaining to the CMU professor are ranked in 1-st, 10-
th, 12th, and 8-th. In general, Google standard output is a
set of pages containing top-10 documents. Thus users are
able to see three documents in the first returned page, and
the other page (i.e.,e3) in the second page. On the other
hand, in terms of our relative ranking algorithm,e1, e2, e3,
and e4 are ranked in 5-th, 7-th, 8th, and 6-th, and all the
documents appear in the first returned page containing top-
10 documents. In the end, users are able to search for all
documents (related to Tom Mitchell at CMU) once.

4 Experimental Validation
For implementation of Google web service client and

server programs, we used Google APIs [6]. We also mea-
sure similarities of documents, using TF/IDF cosine simi-
larity of SecondString [12]. For the similarity-propagation-
based clustering method, we used the Matlab code of [1]
in public. All experimentation were done on4 × 2.6 Ghz
Opteron processors with 32GB of RAM.

4.1 Set-up
Data sets. For validation, we have used two data sets

from real examples on the Web. Theperson name is

4

Keyword Type Name N K
Person Adam Cheyer 97 2

William Cohen 88 10
Steve Hardt 81 6
David Israel 92 19

Leslie Pack Kaelbling 89 2
Bill Mark 94 8

Andrew McCallum 94 16
Tom Mitchell 92 37

David Mulford 94 13
Andrew Ng 87 29

Fernando Pereira 88 19
Lynn Voss 89 26

Product Oracle 25 8
Sun 25 14

Trojan 25 9

Table 2. Characteristics of name data set [4]
(N : # of top- k pages and K: # of clusters as
solution).

a test case using the 1,085 web pages that [4] used. In
2004, [4] extracted 12 personal names from Melinda Ger-
vasio’s email directory. Then, 100 top-ranked web pages
of each name were retrieved from Google, and cleaned and
manually labeled by authors. The resulting data set consists
of 1,085 web pages, 187 different persons, and 420 relevant
pages. Table 2 shows the statistics of the data set. For in-
stance, when “Tom Mitchell” is issued as a query to Google,
92 web pages are retrieved. Among these 92, there are
37 namesakes to “Tom Mitchell”. For example, among 92
web pages, “Tom Mitchell” appears as musicians, executive
managers, an astrologist, a hacker, and a rabbi – 32 different
kinds. That is, a set of 32 individual persons are mixed since
they all have the same name description of “Tom Mitchell”.
Similarly, theproduct name is the other test case as il-
lustrated in Table 2.

Evaluation Metrics. To evaluate competitive clustering
methods, we userand indexRI [14] [15]. Given a set of
N entities and two clustersX and Y , RI = (a+b)

(a+b+c+d) ,
wherea : # of pairs of elements that are in the same set
in X andY ; b : # of pairs of elements that are in different
set inX andY ; c : # of pairs of elements that are in the
same set inX and in different set inY ; andd : # of pairs
of elements that are in different set inX and in the same
set inY . If RI is closed to 1, the two partitionsX andY
are the same such that0 ≤ R ≤ 1. Another metric we are
using to measure the performance is relative error which is
defined as the difference between the actual and predicted
number of clusters divided by the actual number of clusters.
For example, if the algorithm generates4 clusters but the
true solution is5, then the relative error is(5− 4)/5 = 0.2.
The relative error shows how close the clustering result is to

the true solution.

4.2 Results
Table 3 shows the experimental results of two algorithms

on 15 name data sets. For the hierarchical clustering al-
gorithm, we manually try several different cut off values
and choose the best results. However, hierarchical clus-
tering shows wide margin of errors in predicting the num-
ber of clusters with our name data set. Similarity prop-
agation shows almostten times better result in terms of
relative error. In addition, hierarchical clustering requires
pairwise similarities to build up the linkage tree which
requiresO(N3) number of computations and also needs
O(N2/2) amount of memory space to store the linkage
data whereN is the number of documents. On the other
hand, similarity propagation based on sparse matrix re-
quires onlyO(NNZ2) computations andO(NNZ) mem-
ory space whereNNZ is number of related document pairs.

As a conventional method to measure the quality of clus-
tering results, we use rand index as described in the previous
section. The experimental results show that our similarity
propagation clustering shows4% better performance than
hierarchical clustering algorithm. The4% performance dif-
ference between two algorithms is significant, considering
the rand index becomes much smaller if the number of clus-
ters are increasing. Due to the space constraint, we do not
show the clustering ranking results in this paper.

5 Related Work
Bekkerman et. al. proposed two algorithms to disam-

biguate web appearances of people in a social network in
their paper [4]. One is based on link structure of web pages
and the other is using multi-way distributional clustering
method. Their algorithms show more than20% improve-
ment in the aspect of accuracy. Minkov et. al. used lazy
graph walk algorithm to disambiguate names in email doc-
uments in their paper [8]. They provided a framework for
email data, where content, social networks and a timeline
are integrated in a structured graph. Banerjee et. al. pro-
posed multi-way clustering on relation graphs in [9]. Dif-
ferent types of entities are simultaneously clustered based
not only on their intrinsic attribute values, but also on mul-
tiple relations between entities. On et al. introduced multi-
level graph partitioning scheme to address the scalable issue
of name disambiguation problem on both bibliographic and
information retrieval domains [10].

6 Conclusion and Future Work
In a nutshell, we formalized the mixed entity problem

which commonly appear on the Web. Then, we developed a
practical system for resolving mixed entities such as person
or product names for name search tasks. For the develop-
ment of such a system, we introduced a web service based

5

Solution Similarity Propagation Hierarchical Clustering
Cluster # Cluster # Relative Error Rand Index Cluster # Relative Error Rand Index

Adam Cheyer 2 9 3.50 0.17 39 18.5 0.11
William Cohen 10 6 0.40 0.46 59 4.90 0.42

Steve Hardt 6 9 0.50 0.43 45 6.50 0.41
David Israel 19 12 0.37 0.70 50 1.63 0.76

Leslie Pack Kaebling 2 2 0.00 0.50 59 28.5 0.03
Bill Mark 8 7 0.13 0.64 58 6.25 0.60

Andrew McCallum 16 12 0.25 0.67 67 3.19 0.65
Tom Mitchell 37 27 0.27 0.88 66 0.78 0.94

David Mulford 13 31 1.38 0.65 52 3.00 0.65
Andrew Ng 31 37 0.19 0.82 24 0.23 0.67

Fernando Pereira 19 15 0.21 0.74 33 0.74 0.67
Lynn Voss 26 26 0.00 0.82 40 0.54 0.86

Sun 14 9 0.36 0.90 12 0.14 0.92
Oracle 8 5 0.38 0.61 8 0.00 0.66
Trojan 9 4 0.56 0.80 6 0.33 0.76

Average 0.57 0.65 5.02 0.61

Table 3. Experimental results. Relative error shows huge difference between two algorithms.

interface. In addition, since prior knowledge of the prob-
able number of clusters is unknown, we presented an un-
supervised clustering scheme based on similarity propaga-
tion that outperforms the existing well-known hierarchical
agglomerative clustering algorithm. Finally, we proposed
three ranking algorithms for arranging the resulted clusters
in an appropriate order. In practice, our proposal can be used
asname searchin Google2

For our future direction, the scalability of the algorithm
is an ongoing problem. Note that we focus on top-k web
pages retrieved from Google. In this paper, our system cor-
rectly group only top-k web pages to a set of clusters. As
thek value is increased, our clustering scheme suffers from
scalable problem. To address this challenging problem, we
are working on an unsupervised clustering method based on
multi-level graph partitioning approach. In addition, it is in-
feasible for every clustering methods to correctly (perfectly)
cluster web pages at all. To cope with this practical issue,
we will apply the concept of feedback and investigate semi-
clustering problem (induced by users’ feedback) in our fu-
ture framework.

References

[1] B. Frey and D. Dueck. “Clustering by Passing Messages Be-
tween Data Points”. J. Science, vol. 315, February, 2007.

[2] I. Lee, B. On, and S. Yoon. “Algebraic Algorithms to Solve
Name Disambiguation Problem”. Int’l Conf. on Data Mining,
Las Vegas, USA, July, 2009.

[3] D. Lee, B. On, J. Kang, and S. Park. “Effective and Scalable
Solutions for Mixed and Split Citation Problems in Digital Li-

2Google currently provides us with a variety of keyword searching ser-
vices – normal search, advanced search, image search, and so on.

braries”. ACM SIGMOD Workshop on Information Quality
in Information Systems (IQIS), Baltimore, MD, USA, June,
2005.

[4] R. Bekkerman, and A. McCallum. “Disambiguating Web Ap-
pearances of People in a Social Network”. Int’l Conf. on
World Wide Web (WWW), 2005.

[5] B. Jansen, and A. Spink. “An Analysis of Web Documents
Retrieved and Viewed”. Int’l Conf. on Internet Computing,
Las Vegas, Nevada, USA, 2003.

[6] Google Web APIs. “http : //www.google.com/apis”.
[7] R. Baeza-Yates, and B. Ribeiro-Neto. “Modern Information

Retrieval”. Addison Weseley, 1999.
[8] E. Monkov, W. Cohen, and A. Ng. “Contextual Search and

Name Disambiguation in Email using Graphs”. SIGIR’06.
[9] A. Banerjee, S. Basu, and S. Merugu. “Multi-way Clustering

on Relation Graphs”. SIAM Data Mining’07.
[10] B. On, and D. Lee. “Scalable Name Disambiguation using

Multi-level Graph Partition”. SIAM Data Mining’07.
[11] E. Elmacioglu, Y. Tan, S. Yan, M. Kan, and D. Lee. “PSNUS:

Web People Name Disambiguation by Simple Clustering with
Rich Features”. Int’l Workshop on Semantic Evaluation (Se-
mEval), page 268-271, Prague, Czech Republic, June 2007.

[12] SecondString: Open source Java-based pack-
age of Approximate String-Matching “http :
//secondstring.sourceforge.net/”.

[13] N. Slonim, N. Friedman, and N. Tishby. “Unsupervised Doc-
ument Classification using Sequential Information Maximiza-
tion”. SIGIR’02.

[14] W. Rand. “Objective Criteria for the Evaluation of Clustering
Methods”. J. American Statistical Association, 66:846-850,
1971.

[15] K. Yeung, and W. Ruzzo. “Principal Component Analy-
sis for Clustering Gene Expression Data”. Bioinformatics,
17(9):763-774, 2001.

[16] M. Berry, and M Browne. “Understanding Search Engines”.
SIAM Press, 2005.

6

