
Name Disambiguation Using Multi-Level Multi-Resolution (MLMR)
Graph Partitioning

Ingyu Lee1 and Byung-Won On2

1Sorrell College of Business, Troy University, Troy, AL., USA
2Department of Computer Science, University of British Columbia, Vancouver, BC., Canada

Abstract— When we are looking for information about
a certain person, we type the name on search engines.
Then, search engines return many related web pages which
includes the name string. However, some web pages are
directly related with the one we are looking for but other web
pages include the same name string in the contents by coinci-
dence. This is called a name disambiguation problem. With
the increasing number of web pages, finding related web
pages becomes more important. In this paper, we propose a
multi-level and multi-resolution graph partitioning algorithm
(MLMR) to solve a name disambiguation problem. Our
experiments show that MLMR improved the performance by
approximately 20% compared to Metis and 10% compared
to KMeans. We believe that search engines will provide a
better service by combining our MLMR algorithm.

Keywords: data mining, clustering, graph partitioning, Multi-level
algorithm

1. Introduction
Internet allows us to search for information about people

and to work with people whom we never met in real
world. When we are looking for information about a specific
person, we type the name string in search engines. Then,
search engines return many related web pages from World
Wide Web. Some web pages are directly related with whom
we are looking for but other web pages include the same
name string by coincidence. Current search engines do not
distinguish the differences between web pages. This is called
a name disambiguation problem. With the increasing number
of web pages, finding directly related web pages becomes
more and more important. For example, if we are looking
for some information about Tom Mitchell from Carnegie
Mellon University, we type Tom Mitchell in Google search
engine. Then, Google returns links of web pages including
the name string in their contents. Within the first 100 Google
returning web pages, there are 37 different Tom Mitchells [3].
Among the first 100 web pages only 57 documents hold
the information about Tom Mitchell from Carnegie Mellon
University and all the other documents including information
about other Tom Mitchells. Figure 1 shows the search results
in Google. The first link shows information about Tom
Mitchell from Carnegie Mellon University but all the other
links are information about other Tom Mitchells.

Tom

Mitchell

CMU

Tom

Mitchell

GIS

Tom

Mitchell

Musician

Tom

Mitchell

Musician

Tom

Mitchell

Computer

Fig. 1: Google Search Results of Tom Mitchell.

Many researches have been done to provide solutions of
a name disambiguation problem [1], [2], [17], [18]. One
way to solve a name disambiguation problem is clustering
the search results into groups of related web pages using
algorithms such as K-means, spectral, and graph partitioning.
Let’s assume we have n web documents which includes k
different personal information. Then the name disambigua-
tion problem is defined as

min
∑

i=1,...,k

∑

dj∈Ci

(dj −mi)2 (1)

where dj is a document j = 1, . . . , n and mi is a centroid
of cluster Ci for i = 1, . . . , k. Kmeans [11], [16] is a
simple and most popular algorithm in clustering. However,
the convergence of Kmeans depends on the initial centroid
points. In other hand, spectral clustering methods [11], [19]
show good performance with a little bit of operational
overhead. However, when dimensions become large, Kmeans
and spectral algorithms are infeasible to apply. For larger
data set, multi-level graph partitioning algorithms have been
used to provide scalable solutions [14], [15]. A name disam-
biguation problem has variant sizes of clusters and the cluster
size distribution is extremely skewed. Therefore, traditional

graph partitioning algorithms do not properly cluster data
sets for a name disambiguation problem.

In this paper, we propose a multi-level and multi-
resolution graph partitioning algorithm. This algorithm es-
pecially useful when we partition extremely skewed graphs
which have variant sizes of clusters. Our algorithm combines
a multi-level with a multi-resolution spectral clustering al-
gorithm. Multi-level property provides scalable algorithms
even with huge number of web pages and multi-resolution
allows us to cluster extremely skewed name data sets.

This paper consists of the followings. In Section 2, we
provide some background of graph partitioning algorithms
especially spectral bisection and multi-level graph partition-
ing. Our multi-level and multi-resolution algorithm (MLMR)
is described in Section 3. Experimental results with web
naming data sets are presented in Section 4. Concluding
remarks and future plans are followed in Section 5.

2. Graph Partitioning
A graph G = (V,E) is defined in terms of a set of vertices

V and a set of edges E. Graph partitioning is defined as a
function to assign each vertices to a subgraph Gi, where
i = 1, . . . , m and m is the number of clusters. A goal
of graph partitioning is to find subsets {G1, G2, . . . , Gm}
which minimizes the connection between subgraphs

min
∑

i,j∈(1,...,m)

Cut(Gi, Gj)
|Gi|+ |Gj | (2)

and, at the same time, maximizes the edges within the
subgraphs such as

max
∑

i,j∈(1,...,m)

Edges(Gi) + Edges(Gj)
|Gi|+ |Gj | (3)

where Cut(Gi, Gj) is the number of edges connecting two
subgraphs Gi and Gj , Edges(Gi) is the number of edges
in the subgraph Gi, and |Gi| is the number of vertices in
the subgraph.

Spectral clustering is based on global connectivity unlike
other graph partitioning algorithms which depend on local
information, as shown in [19]. To apply spectral clustering,
we first generate a similarity graph from original graph G.
In the similarity graph, Gs(i, j) has 1 if G(i, j) 6= 0 and the
diagonal element Gs(i, i) has the number nonzero elements
in that row i. After constructing a similarity graph Gs, we
find the second smallest eigenvalue and a corresponding
eigenvector which is known as a fiedler vector. Finally, we
divide the graph into two subgraphs using the sign of the
components of the fiedler vector [9].

Other approach that has greatly accelerated the partition-
ing of graphs is the use of multi-level techniques. In multi-
level, we are constructing a hierarchy of approximations to
the original graph so that a coarse graph can be quickly
partitioned. Then, the solution is progressively refined until

an original graph is reached. These techniques are very
similar to a multi-grid method [4] for solving numerical
problems. Especially, with the increasing number of web
pages, multi-level methods provide scalable algorithms as
shown in [14], [15].

A multi-level approach has three phases: coarsening
phase, partitioning phase and uncoarsening phase. Each of
the phases are described in the followings.

1) Coarsening Phase. The graph G0 is transformed into a
sequence of smaller graphs G1, G2, . . . , Gm such that
|V0| > |V1| > |V2| > · · · > |Vm|. At each level, we
applied an approximation algorithm to convert from
Gi to Gi+1 until we reached a reasonably small graph
Gm.

2) Partitioning Phase. A 2-way graph partition Pm of the
graph Gm = (Vm, Em) is computed that partitions Vm

into two parts, each containing approximately half the
vertices of Gm. After the graph Gm becomes small
enough, we apply Kernighan and Lin [7] or Fiduccia
Mattheyses [8] algorithm to refine the partition.

3) Uncoarsening Phase. The partitioning Pm of Gm is
projected back to G0 by going through intermediate
partitions Pm−1, Pm−2, . . . , P1, P0. At each level, we
applied uncoarsening algorithm to expand a graph
Gi+1 into a graph Gi.

3. Multi-Level and Multi-Resolution
(MLMR) Graph Partition Algorithm

In this section, we describe the characteristics of name
data sets and propose an algorithm to solve the problem.
We used name data set from Bekkerman [3] to analyze the
characteristics of the data. It has twelve personnel names
and each name set has different number of categories. The
cluster size distribution is also extremely skewed and biased.
For example, Cheyer has 97 documents with 2 classes but
only one document belongs to one class and the other class
has 96 documents. Kaebling shows the similar characteristic
as shown in Table 1. In another case, Cohen has 10 clusters
but one cluster dominates the data set with 67 documents and
the other 7 clusters each has only one document. Figure 2
summarizes the distribution of cluster sizes for each name
data sets. Each color shows different classes and the sizes
of color bar shows the number of documents belong to the
cluster.

Therefore, conventional graph partitioning algorithms,
which are based on the assumption that cluster sizes are
similar or evenly distributed, do not work properly on name
data sets. To overcome the latter, we propose a multi-level
and multi-resolution (MLMR) graph partitioning algorithm.
MLMR algorithm is based on multi-level graph partitioning
but allow multi-resolutions with variant levels. At each
step, the algorithm decides to go further to next level only
if the partitioning produces more inter cluster edges than

Name Pages Clusters Max
Adam Cheyer 97 2 96

William Cohen 88 10 67
Steve Hardt 81 6 64
David Israel 92 19 38

Leslie Kaebling 89 2 88
Bill Mark 94 8 54

Andrew McCallum 94 16 54
Tom Mitchell 92 37 15

David Mulford 94 13 56
Andrew Ng 87 31 32

Fernando Pereira 88 19 32
Lynn Voss 89 26 25

Total 1085 187

Table 1: Dataset Statistics. Each name has different number
of documents and different number of categories.

0

10

20

30

40

50

60

70

80

90

100

T
o
ta

l N
u
m

b
e
r

o
f
D

o
cu

m
e
n
ts

ch
ey

er

co
he

n
ha

rd
t

isr
ae

l

ka
eb

lin
g

m
ar

k

m
cc

al
lu
m

m
itc

he
ll

m
ul
fo
rd ng

pe
re

ira
vo

ss

Fig. 2: Problem Statistics. Each color represent different
clusters.

intra cluster edges. Otherwise, MLMR algorithm stops at
the current level. In the end, MLMR algorithm generates
different levels for each branch and various resolutions for
each leaf node.

MLMR graph partitioning algorithm has two phases:
graph partitioning and graph merging. In graph partitioning
phase, we applied spectral bisection algorithm recursively to
divide a given graph into two subgraphs until subgraphs be-
come a clique or reach to a condition where subgraphs have
more inter subgraph edges than intra subgraph edges. After
dividing graph into small subgraphs, we merge subgraphs
together if two subgraphs have the biggest normalized cuts.
We repeatly merge subgraphs until the number of subgraphs
equal to the given number of clusters. Figure 3 shows the
outline of the partition and merging algorithm.

The details of MLMR algorithm is described in Figure 4

Partitioning Phase

C1

C2 C3

C4

C5 C6

C7

Merging Phase

C1

C2

C3

C4

C5

Fig. 3: MLMR graph partitioning.

and Figure 5. After constructing a graph G, we used a spec-
tral bisection algorithm to partition the graph into G1 and
G2. Once we partition the graph, we compute normalized
cut using two subgraphs G1 and G2. If the normalized cut
is bigger than a threshold value, then we keep the original
graph G and stop the algorithm on that branch. Otherwise,
we keep the subgraphs and applied the same algorithm
recursively on subgraphs G1 and G2. This partitioning phase
generates different levels for each branch, and the resolutions
of each branch is also different.

Once we have gone through the partitioning phase,
we applied a merging phase on the partitioned subgraphs
G1, G2, · · · , Gm. The number of subgraphs m depends on
the resolution we choose during the partitioning phase. Dur-
ing the merging phase, we construct a pairwise normalized
cut table as shown in Table 6. Then, we merge two subgraphs
which have the largest normalized cut. We repeatedly merge
subgraphs until the number of subgraphs m reaches the given
number of clusters.

At each level, we compute an eigenvalue and a corre-
sponding eigenvector for spectral partitioning. Assume we
have N nodes in our initial graph. Then, for level i, we
have 2i−1 subgraphs with N/2i−1 node elements. If we
assume the computation of eigenvector takes N3 for N
elements [12], [10], the total computation requires

T = N3 +2∗
(

N

2

)3

+4∗
(

N

4

)3

+ · · ·+N ∗
(

N

N

)3

(5)

which is simplified as

T =
4
3
N2 (N − 1) (6)

in an ideal case where a graph G is divided into two
approximately equal size subgraphs G1 and G2.

• Graph Partitioning Phase:
1) We build a graph G = (V, E) from a term-

document matrix A by AT A. Since AT A is a
completely dense graph, we do not explicitly con-
struct AT A. Rather, we keep only values which
are larger than a threshold value. Intuitively, this
process filters out edges for remotely related doc-
uments and keeps only edges for strongly related
documents.

2) Then, we divide the graph G into two subgraphs
Gi and Gj using spectral bisection and compute
normalized cuts between two subgraphs Gi and
Gj . Normalized cuts between subgraphs Gi and
Gj is defined as

NormCuti,j =
Cut(Gi, Gj)

Edge(Gi) + Edge(Gj)
(4)

where Cut(Gi, Gj) is the number of edges con-
necting two subgraphs and Edge(Gi) is the num-
ber of edges within subgraph Gi.

3) If the normalized cut NormCuti,j is small, then
we divide the graph G into Gi and Gj , and
continuously applying the partitioning algorithm.
Otherwise, we keep the original graph G and stop
the partition.

Fig. 4: The Graph Partitioning Algorithm

During the merging phase, we compute a ratio between
the number of edges in the graph Gi and Gj , and the
number of edges connecting graph Gi and Gj for each pair
i, j = 1, . . . , n where n is the number of subgraphs in the
partitioning phase. It requires 1

2n2 computations until the
number of clusters n reaches to k which is a given number
of clusters. Therefore, the total computation will be

1
2
(n− k) ∗ n2 (7)

where n depends on the resolution in the partitioning phase
and k is the number of clusters in the solution. Our partition
resolution n is very close to the solution k, then merging
phase cost becomes minimal.

4. Empirical Results
To mesure the performance, we used name set data from

Bekkerman [3]. First, we constructed a term document
matrix A with normalization and stemming options using
TMG [21] software. We also deleted commonly used terms
from the terminology dictionary. Term frequency and doc-
ument inverse frequency are used for local and global term
weighting, respectively. Then, we constructed a document-
document graph matrix G = AT A by keeping only values
which are bigger than a threshold. We used .3 for our

• Graph Merging Phase:
1) We compute the intra subgraph edges for each

subgraph Gi and inter subgraphs edges for each
pair of subgraphs Gi and Gj . The pairwise com-
putation cost depends on the subgraph resolution
during the partitioning phase.

2) Subgraph Gi and Gj will be merged into a
graph G if the normalized cut between two sub-
graphs Gi and Gj has the maximum value in
{G1, G2, . . . , Gn} where n is the number of sub-
graphs.

3) If the number of subgraphs n is smaller than the
given number of cluster k, then we repeatedly
apply the merging algorithm until the number of
subgraphs reaches to the given number of clusters.

Fig. 5: The Graph Merging Algorithm

G1 G2 · · · · · · · · · · · · · · · Gn

G1 • m1 m2 m3 m4 m5 m6 m7

G2 • m8 m9 · · · · · · · · · · · ·
· · · • · · · · · · · · · · · · · · ·
· · · • · · · · · · · · · · · ·
· · · • · · · · · · · · ·
· · · • · · · · · ·
· · · • · · ·
Gn •

Fig. 6: Normalized cut merge table between subgraphs.

threshold value. Finally, we applied Metis graph partition-
ing and MLMR algorithm to cluster the documents. We
measured precision, recall, and Fmeasure. Precision is the
ratio between the number of correctly predicted documents
and the number of predicted documents. Recall is the ratio
between the number of correctly predicted documents and
the number of documents belongs to that category from a
solution set. Fmeasure is an arithmetic average of precision
and recall.

We also measured RAND index which has been used in
statistics community to compare two clustering results [20].
Given a set of n documents D = {d1, . . . , dn}, we wish
to compare two clusters: C and S. The resulting cluster of
our algorithm is defined as C = {C1, . . . , Ck} and manually
derived solution set is defined as cluster S = {S1, . . . , Sk}.
Then, RAND index is defined as

RAND =
a + b

a + b + c + d
(8)

where a is the number of pairs of elements in D that are in
the same set in C and the same set in S, b is the number of
pairs of elements in D that are in different sets in C and in
different sets in S, c is the number of pairs of elements in D
that are in the same set in C and in different sets in S, and d
is the number of pairs of elements in D that are in different
sets in C and in different sets in S. Intuitively, a + b is the

Metis MLMR
Name Pr Re Fm Rd Pr Re Fm Rd

Adam Cheyer .99 .5 .66 .49 .99 .5 .66 .96
William Cohen .76 .18 .29 .44 .98 .25 .4 .61

Steve Hardt .78 .16 .27 .42 .88 .25 .39 .61
David Israel .58 .16 .26 .75 .94 .33 .49 .47

Leslie Kaebling .98 .5 .66 .49 .99 .5 .66 .95
Bill Mark .74 .27 .4 .62 .94 .39 .55 .45

Andrew McCallum .72 .19 .31 .65 .98 .62 .76 .62
Tom Mitchell .59 .32 .42 .93 .96 .47 .63 .72

David Mulford .69 .25 .37 .64 .93 .42 .58 .6
Andrew Ng .68 .33 .45 .82 .95 .55 .69 .67

Fernando Pereira .57 .16 .26 .8 .94 .37 .53 .46
Lynn Voss .68 .32 .43 .84 .95 .39 .56 .76

Average .73 .27 .39 .65 .95 .42 .57 .65

Table 2: Experimental results of Metis, and MLMR on name
dataset. Pr: Precision, Re: Recall, Fm: Fmeasure, Rd: Rand
Index.

number of agreements between C and S, and c + d is the
number of disagreements between C and S. RAND index
has a value between 0 and 1 with 0 indicating that two data
clusters do not agree on any pair of points and 1 indicating
that two data clusters are exactly the same.

Table 2 shows the performance comparison of Metis and
MLMR algorithm on 12 different name data sets. MLMR
shows 20% better than Metis in terms of precision, 15%
better in terms of recall, and 18% better in terms of Fmea-
sure. For the Rand Index, the Metis shows better numbers
when the name data sets are relatively evenly spread out
among the data set. Metis is designed to divide a graph into
equal sized subgraphs which is important in load balancing
for parallel computing. However, in general, name data set
is extremely skewed and one cluster in the set dominates the
whole data set as described in the previous section.

Table 3 shows the performance comparison between
KMeans and MLMR clustering algorithm. Even compared
with KMeans, MLMR shows approximately 10% better
performance in terms of precision, recall, and Fmeasure.
However, in Rand Index, KMeans shows a slightly better
performance than MLMR in average. KMeans shows better
Rand Index in 5 data sets and MLMR shows better numbers
in 3 data sets. The other data sets show similar Rand Index
numbers on both algorithms.

Figure 7 summarizes the performance results with aver-
age performance for 12 different name data sets. MLMR
algorithm shows approximately 10% better performance
compared to the conventional K-means algorithm in terms
of precision, recall and Fmeasure with similar number in
Rand Index. Compared to Metis, MLMR algorithm shows
approximately 20% better performance in terms of precision.
Considering Metis is designed to share the loads in parallel
computing environments, the experimental results are pre-
dictable. From Rand Index point, KMeans shows the better
performance since MLMR is based on approximation.

To understand how the algorithms catch the cluster size

KMeans MLMR
Name Pr Re Fm Rd Pr Re Fm Rd

Adam Cheyer .99 .5 .66 .57 .99 .5 .66 .96
William Cohen .82 .16 .27 .54 .98 .25 .4 .61

Steve Hardt .85 .22 .36 .48 .88 .25 .39 .61
David Israel .76 .22 .34 .72 .94 .33 .49 .47

Leslie Kaebling .98 .5 .66 .95 .99 .5 .66 .95
Bill Mark .83 .23 .36 .57 .94 .39 .55 .45

Andrew McCallum .86 .29 .43 .67 .98 .62 .76 .62
Tom Mitchell .79 .44 .56 .92 .96 .47 .63 .72

David Mulford .88 .24 .38 .59 .93 .42 .58 .6
Andrew Ng .86 .35 .5 .74 .95 .55 .69 .67

Fernando Pereira .82 .27 .4 .79 .94 .37 .53 .46
Lynn Voss .88 .32 .47 .74 .95 .39 .56 .76

Average .86 .31 .45 .69 .95 .42 .57 .65

Table 3: Experimental results of Kmeans and MLMR on
name dataset. Pr: Precision, Re: Recall, Fm: Fmeasure, Rd:
Rand Index.

Precision Recall Fmeasure RandIndex
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Performance Summary

A
v
e

ra
g

e
 P

e
rf

o
rm

a
n

c
e

KMeans
Metis
MLMR

Fig. 7: Performance Summary.

distribution, we analyzed the spectrum of cluster sizes of
the three methods. Figure 8 shows the spectrum analysis
of clustering results of Kmeans, Metis, and MLMR for 12
name data sets. After clustering name data sets, we sorted
clustering results in ascending order in cluster size. The
first line shows the spectrum of manually clustered solution
set, and Kmeans, Metis and MLMR results are followed
in that order. The spectrum shows how close the clustering
results to a manually clustered solution set in terms of cluster
size. Metis always divides the data set into similar size
clusters as shown in the Figure 8. Kmeans shows close
spectrum to a manual solution in some data sets such as
Mark, and McCallum. However, in all the other name data
sets, MLMR shows closer spectrum to a manual solution. We
can conclude that MLMR finds the cluster size distribution
better than the other algorithms.

Solution
KMeans

Metis
MLMR

0 20 40 60 80 100

Cheyer

Solution
KMeans

Metis
MLMR

0 20 40 60 80 100

Cohen

Solution
KMeans

Metis
MLMR

0 20 40 60 80 100

Hardt

Solution
KMeans

Metis
MLMR

0 20 40 60 80 100

Israel

Solution
KMeans

Metis
MLMR

0 20 40 60 80 100

Kaebling

Solution
KMeans

Metis
MLMR

0 20 40 60 80 100

Mark

Solution
KMeans

Metis
MLMR

0 20 40 60 80 100

McCallum

Solution
KMeans

Metis
MLMR

0 20 40 60 80 100

Mitchell

Solution
KMeans

Metis
MLMR

0 20 40 60 80 100

Mulford

Solution
KMeans

Metis
MLMR

0 20 40 60 80 100

Ng

Solution
KMeans

Metis
MLMR

0 20 40 60 80 100

Pereira

Solution
KMeans

Metis
MLMR

0 20 40 60 80 100

Voss

Fig. 8: Spectrum Analysis for Name Data Set.

5. Related Works
Graph partitioning has been studied in parallel computing

community. Main goal is to divide the workloads among
computing nodes and to reduce the communications between
computing nodes. To support these goals, they focus on
dividing a graph into similar sizes of subgraphs to balance
the workload between computing nodes with minimal com-
munications. Metis [14], [15] and Chaco [13] are software
packages popularly used to partition graph into balanced
subgraphs. However, a name disambiguation problem con-
sists of extremely skewed and biased classes.

In data mining community, other methods to divide into
unbalanced subgraphs has been studied for web and text doc-
uments clustering. Graclus [6] has been proposed to divide
graph into unbalanced way to fit well in skewed clustering.
Experimental results showed the better performance than
Metis for some data sets. eigenCluster [5] has been proposed
to provide a solution integrating clustering algorithm with a
search engine. They focused on unsupervised learning and
used a dynamic program to merge clusters after partitioning.
As far as authors aware, MLMR algorithm is the only one
that allows variant levels and resolutions during partitioning

phase.
Bekkerman et. al. proposed two algorithms to disam-

biguating web appearances of people in a social network in
their paper [2]. One is based on link structure of web pages,
another using multi-way distributional clustering method.
Minkov et. al. used a lazy graph walk algorithm to dis-
ambiguating names in email documents in their paper [17].
They provided framework for email data, where content,
social networks and a timeline to integrated in a structured
graph. Banerjee et. al. proposed a multi-way clustering
on relation graphs in [1]. Different types of entities are
simultaneously clustered based not only on their intrinsic
attribute values, but also on the multiple relations between
entities. On and Lee used multi-level graph partitioning
methods to provide a scalable name disambiguation solution
in their paper [18].

6. Concluding Remarks
In this paper, we analyzed the characteristics of a name

disambiguation problem and we also provided a multi-level
and multi-resolution (MLMR) graph partitioning algorithm
for extremely skewed and biased class clustering. Exper-
iments show that MLMR algorithm improves the perfor-
mance by 10% in terms of precision, recall and Fmeasure
with similar Rand index compared to KMeans. We also
showed the spectral analysis of clustering results of three
methods and compared with a manual solution. Metis divides
the graph into evenly among clusters, and Kmeans shows
better spectrum in detecting skewed classes for 2 data sets.
However, MLMR shows the better spectrum results in other
10 data sets.

Current version of MLMR algorithm is based on super-
vised learning. However, in real web searching environment,
the number of clusters is unknown in advance. We are plan-
ning to develop an unsupervised algorithm which assumed
the number of clusters based on spectrum analysis. After
clustering documents, how to display using graphical user
interface and how to rank the clustering results are issues to
solve before combining with search engines.

References
[1] A. Banerjee, S. Basu, and S. Merugu, “Multi-way clustering on

relation graphs,” in Proceedings of SIAM Data Mining 2007, 2007.
[2] R. Bekkerman and A. McCallum, “Disambiguating web appearances

of people in a social network,” in Proceedings of International World
Wide Web Conference Committee, 2005.

[3] R. Bekkerman, “Name data set,” http://www.cs.umass.edu/ ronb.
[4] W. L. Briggs, V. E. Henson, and S. F. McCormick, Multgrid Tutorial,

2nd ed. Philadelphia, PA: SIAM, 2000.
[5] D. Cheng, R. Kannan, S. Vempala, and G. Wang, “A divide-and-

merge methodology for clustering,” in ACM Transactions on Database
Systems, 2005.

[6] I. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without
eigenvectors: A multilevel approach,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 29:11, pp. 1944–1957, 2007.

[7] A. Dunlup and B. Kernighan, “A procedure for placement of standard-
cell vlsi circuits,” IEEE Tans. CAD, pp. 92–98, 1985.

[8] C. Fiduccia and R. Mattheyses, “A linear time heuristic for improving
network partitions,” in Proc. 19th IEEE Design Automation Confer-
ence, IEEE, 1982.

[9] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Math
Journal, vol. 23, pp. 298–305, 1973.

[10] G. Golub and C. V. Loan, Matrix Computations, 3rd ed. Baltimore,
MD: Johns Hopkins University Press, 1996.

[11] J. Han, M. Kamber, and A. Tung, Spatial clustering methods in
data mining: A survey. In Geographic Data Mining and Knowledge
Discovery. Taylor and Francis, 2001.

[12] M. Heath, Scientific Computing: An introductory survey. Prentice
Hall, 2002.

[13] B. Hendrickson and R. Leland, “The chaco user’s guide: Version 2.0,”
Sandia, Tech. Rep., 1994.

[14] G. Karypis and V. Kumar, “Parmetis: Parallel graph partitioning and
sparse matrix ordering library,” Department of Computer Science,
University of Minnesota, Tech. Rep. TR 97-060, 1997.

[15] ——, “A parallel algorithm for multilevel graph partitioning and
sparse matrix ordering,” Journal of Parallel and Distributed Com-
puting, vol. 48, no. 1, pp. 71–95, 1998.

[16] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the Fifth Berkeley Sympositum
on Mathematical Statistics and Probability, 1967.

[17] E. Monkov, W. Cohen, and A. Y. Ng., “Contextual search and name
disambiguation in email using graphs,” in Proceedings of SIGIR, 2006.

[18] B. On and D. Lee, “Scalable name disambiguation using multi-level
graph partition,” in Proceedings of SIAM Data Minings, 2006.

[19] A. Pothen, H. Simon, and K. Liou, “Partitioning sparse sparse matrices
with eigenvectors of graphs,” SIAM Journal on Matrix Analysis and
Applications, vol. 11(3), pp. 430–452, 1990.

[20] W. M. Rand, “Objective criteria for the evaluation of clustering
methods,” Journal of the American Statistical Association, vol. 66,
pp. 846–850, 1971.

[21] D. Zeimpekis and E. Gallopoulos, TMG: A MATLAB toolbox for
generating term document matrices from text collections, 2006.

