
BF*: Web Services Discovery and Composition as Graph Search Problem

Seog-Chan Oh Byung-Won On Eric J. Larson Dongwon Lee

IE / Penn State CSE / Penn State IST / Penn State IST / Penn State
sxo160@psu.edu on@cse.psu.edu ejl175@psu.edu dongwon@psu.edu

Abstract
When there are a large number of web services avail-

able (e.g., in the range of 1,000 - 10,000), it is non-trivial to
quickly find web services satisfying the given request. Fur-
thermore, when no single web service satisfies the given re-
quest fully, one needs to “compose” multiple web services
to fulfill the goal. Since the search space for such a compo-
sition problem is in general exponentially increasing, it is
important to have wise decision on underlying data struc-
tures and search algorithms. Toward this problem, in this
paper, we present a novel solution, named as BF* (BF-
Star), that adopts the competitive A* as a search algorithm
while utilizing the Bloom Filter as a succinct data structure.

1 Introduction

A web service,w, has typically two sets of parameters:
win = {I1, ..., Ip} for SOAP request (as input) andwout =
{O1, ..., Oq} for SOAP response (as output). Whenw is
invoked with all input parameters,win, it returns the output
parameters,wout. In general, all input parameters inwin
must be provided (i.e., mandatory). For instance, consider
the following web servicefindRestaurant :

<message name=’findRestaurant_Request’>
<part name=’zip’ type=’xs:string’>
<part name=’foodPref’ type=’xs:string’>

</message>
<message name=’findRestaurant_Response’>

<part name=’name’ type=’xs:string’>
<part name=’phone’ type=’xs:string’>

</message>

Now, suppose a user,u, currently has zip code, city name,
and food preference information, but is looking for the
phone number of a restaurant. Then,u can invokew with
zip andfoodPref and receivename andphone in re-
turn,{name,phone} ← w(zip, foodPref), which contains
the desired phone number in it. In general, when a request
(by users or s/w agents),r, has initial input parametersrin

and desired output parameters,rout, the following holds:

Proposition 1 (Full-Matching) A web service w can
“fully” match r iff (1) rin ⊇ win, and (2) rout ⊆ wout. 2

That is, one can invokew by usingrin since the required
input parameters ofwin are subset of what is given inrin.
Similarly, since the output parameters ofwout are superset
of what is desired inrout, the goal is achieved.

In practice, however, it is often impossible that one web
service can fully satisfy the given request. Then, one has to
combine multiple web services that only partially satisfy the
request. Given a requestr and two web servicesx andy, for
instance, suppose one can invokex using inputs inrin, but
the output ofx does not have what we look for inrout (i.e.,
rin ⊇ xin ∧ rout 6⊆ xout). Symmetrically, the output ofy
generates what we look for inrout, but one cannot invokey
directly since it expects inputs not inrin (i.e., rin 6⊇ yin ∧
rout ⊆ yout). Furthermore, using initial inputs ofrin and
the outputs ofx, one can invokey (i.e., (rin ∪ xout) ⊇
yin). Then, the requestr can be satisfied by the flow of:
xout ← x(rin); yout ← y(rin ∪ xout); rout ← yout. Based
on this observation follows the following Lemma (proof is
omitted):

Lemma 1 (Joint-Matching). A chain of web services,
w1 ⇒ ... ⇒ wn, can “jointly” match r, iff (1) rin ⊇ w1

in,
(2) (rin ∪ w1

out ∪ ... ∪ wi−1
out) ⊇ wi

in(1 ≤ i ≤ n − 1), and
(3) (rin ∪ w1

out ∪ ... ∪ wn
out) ⊇ rout.

2 Our Approaches

In handling large number of web services, two issues are
critical: (1) the frequently-occurring “membership” check-
ing (e.g.,rin ⊇ win) needs to be handled efficiently; and
(2) an efficient search algorithm to support joint-matching
case is needed. To solve these problems, we propose two
techniques below.

2.1 Fast Membership Checking w. Bloom Filters

A Bloom Filter [1] is a simple space-efficient random-
ized data structure for representing a set in order to support
membership queries efficiently. Since it is based on a myr-
iad of hash functions, it takesO(1) to check the member-
ship, and its space efficiency is achieved at the small cost of

1

 m

bits

1

1

1

1

1

H1(X)

H2(X)

H3(X)

H1(Y)

H2(Y)

H3(Y)

Parameter X

Parameter Y

Figure 1. Bloom filter with 2 parameters, X
and Y , stored through 3 hash functions.

errors. In the context of our problem, the idea is the fol-
lowing. For a web service,w, with win = {I1, ..., Ip}
and wout = {O1, ..., Oq}, two corresponding bloom fil-
ters are prepared,BFw

in andBFw
out, respectively, where the

bloom filter is a vector ofm bits initialized to 0. Further,
k independent hash functions,H1, ...,Hk, are given, each
with the output range{1, ..., m}, in sync withm bits of
bloom filters. Then, each parameterIi ∈ win (resp.Oj ∈
wout) is fed tok hash functions, and each bit at positions
H1(Ii), ...,Hk(Ii) in BFw

in (resp. H1(Oj), ...,Hk(Oj) in
BFw

out) is set to 1. If the bits at some positions were set to 1
by previous hash functions (due to hash collision), do noth-
ing. Once all parameters inwin andwout are processed this
way, the bloom filters,BFw

in andBFw
out, become a succinct

representation of potentially long list of input and output
parameters of a web service. The idea is illustrated in Fig-
ure 1.

To check the membership ifX ∈ win, one checks the
bits at positionsH1(X), ...,Hk(X) in BFw

in. If any of them
is 0, then one concludes thatX 6∈ win for sure. Other-
wise, one concludes thatX ∈ win with a small probabil-
ity of being false. To merge two bloom filters, simple OR
of two is sufficient. The salient feature of bloom filter is
that one can control the probability of false positive by ad-
justingm, k, p, andq — the precise probability is known

as [2]:
(
1−

(
1− 1

m

)k(p+q)
)k

≈
(
1− ek(p+q)/m

)k
. For

instance, with 5 hash functions (i.e.,k = 5), 10 bits in
bloom filter, and upto 100 input/output parameters (i.e.,
(p+q)

m = 10), the probability becomes mere 0.00943.

2.2 BF*: A* Based Graph Search Algorithm

2.2.1 Stratified Flooding Algorithm

Lemma 1 readily suggests a naive fixed-point algorithm for
solving joint-matching case as shown in Algorithm 1.Ω
(resp.Σ) is a set of web services that have been visited so far
(resp. a set of parameters gathered so far). At each iteration,

let W ← all web services, Ω← ∅ andΣ← rin;
print rin, “⇒”;
while Σ 6⊇ rout do

δ ← {w|w ∈W,w 6∈ Ω, win ⊆ Σ};
Ω← Ω ∪ δ;
Σ← Σ ∪ (

⋃
w∈δ wout);

print δ, “⇒”;
print rout;

Algorithm 1 : Stratified Flooding Algorithm

rin

a c d x

b e y

rout

0

1

2

3
stratum

Figure 2. Example lattice.

new set of web services,δ, are found that can be invoked
usingΣ. Since there are only finite number of web services,
W , and each iteration adds only “new” set of web services
(i.e., w 6∈ Ω), the iterations must end. At some point, if
Σ ⊇ rout, then it means that using the parameters gathered
so far (i.e.,Σ), one can get the desired output parameters in
rout, thus solving the joint-matching problem.

In general, our problem can be naturally casted into a
partially-ordered set (i.e., lattice), where “x ⇒ y” means
that one can invoke a web servicey using the parameters
gathered inΣ ∪ xout, and theleast upper bound (lub)is
rin and thegreatest lower bound (glb)is rout. Note that
the function “⇒” in the lattice is “monotonic” (i.e., al-
ways downward), and therefore, as Knaster-Tarski Theo-
rem [4] implies, there always exists a fixed point, ensuring
the correctness of Algorithm 1. Figure 2 is an example lat-
tice. Using parameters inrin at stratum 0, one can invoke
web servicesa, c, d, andx at stratum 1. Then,a ⇒ b
means that using parameters inΣ ∪ aout, one can invoke
b (i.e., rin ∪ aout ⊇ bin). Similarly, e ⇒ rout means
that using parameters inΣ ∪ eout, one can invokerout (i.e.,
rin ∪ cout ∪ eout ⊇ rout), reaching the goal.

The naive stratified flooding algorithm in Algorithm 1
is simple but inefficient since at each stratum, it finds “all”
web services (i.e., flooding) that can be invoked, and ac-
cumulate them intoΩ. For instance, for the example of
Figure 2, the naive algorithm would generate: (1) Stratum
0: Ω ← ∅, Σ ← rin; (2) Stratum 1:Ω ← {a, b, d, x},
Σ ← rin ∪ aout ∪ cout ∪ dout ∪ xout; (3) Stratum 2:

2

rin

a c d x

b e y

rout

Figure 3. Example of search. Web services d
and y are visited unnecessarily, but eventually
the path rin ⇒ x⇒ rout is found.

Ω← {a, b, d, x, b, e, y}, Σ← rin∪aout∪cout∪dout∪xout∪
bout ∪ eout ∪ yout; and (4) Stratum 3: The goal is reached
sinceΣ ⊇ rout. Note that any one of the “four” correct
solutions could have been sufficient: (1)rin ⇒ a ⇒ b ⇒
rout; (2) rin ⇒ c ⇒ b ⇒ rout; (3) rin ⇒ c ⇒ e ⇒ rout;
and (4)rin ⇒ x ⇒ rout. However, Algorithm 1 finds all
four solutions unnecessarily, making it less than optimal.

2.2.2 BF* Graph Search Algorithm

Suppose, ati-th stratum, there areN web services that one
can invoke. Then, (1) (sequential mode) if one can invoke
one web service at a time, then there areN choices; and (2)
(parallel mode) if one can invoke multiple web services to-
gether at a time, then there are2N−1 choices. For instance,
in Figure 3, starting fromrin, (1) in sequential mode, there
are 4 ways to invoke subsequent web services:{a}, {c},
{d}, and{x}; and (2) in parallel mode, there are 15 ways to
invoke subsequent web services:{a}, {c}, {d}, {x}, {a,c},
{a,d}, {a,x}, {c,d}, {c,x}, {d,x}, {a,c,d},{a,c,x}, {c,d,x},
and{a,c,d,x}. Algorithm 1 is equivalent to invoking “all”
of these choices “always” – making it a correct, but ineffi-
cient. Since there are large number of subsequent choices
available at each stratum, one needs to pick next choice
carefully. For this selection strategy, we propose to use A*
algorithm [3].

A* algorithm is a heuristics-based competitive search al-
gorithm. At each state, it considers some heuristics-based
cost to pick the next state with the lowest cost. For instance,
in Figure 3, starting fromrin, one has 4 choices to make in
sequential mode. Then, A* will suggest only 1 out of 4 as a
next web service to visit based on heuristics. Supposed was
visited. Then, fromd, again all possible next choices are
computed and one of them is suggested. However, in this
case, there is no available next choice to make, thus one has
to backtrack to the previous state. Then, another one, sayx,
out of 4 is suggested as a next move, and so on. When next

let W ← all web services, Ω← ∅ andΣ← rin;
print rin, “⇒”;
while Σ 6⊇ rout do

δ ← {w|w ∈W,w 6∈ Ω, win ⊆ Σ};
wmin ← w(∈ δ) with MIN(f(w));
Ω← Ω ∪ wmin;
Σ← Σ ∪ wmin

out ;
print wmin, “⇒”;

print rout;
Algorithm 2 : BF* Algorithm

move is the goal state, i.e.,rout, the search is successful.
Since the performance of A* algorithm heavily depends on
the quality of the heuristics, it is important to use the right
heuristics to strike a good balance between accuracy and
speed. In our context, A* algorithm can be captured as fol-
lows. Given a set of candidate web services to visit next,
N (6⊆ Ω), one choosesn(∈ N) with the “smallest”f(n) (=
h(n) + g(n)) such that:

h(n) =
1

|(rout \ Σ) ∩ nout|
(1)

g(n) = |Ω| (2)

That is, the remaining parameters ofrout that are yet to be
found arerout \Σ. Then, the intersection of this andnout is
a set of parameters thatn helps to find. The more parame-
tersn finds, the bigger contributionn makes to reach to the
goal. Therefore, A* favors then whose contribution to find
remaining parameters is the max (i.e.,h(n) is the smallest).
In order words, our heuristics is based on the hypothesis that
“visiting a web service with bigger contribution would find
the goal faster than otherwise.” Combining this idea with
Bloom Filter of Section 2.1, our main proposal, BF* algo-
rithm, is illustrated in Algorithm 2. The missing operational
semantics of BF* algorithm is similar to that of A* algo-
rithm (e.g., using OPEN and CLOSED priority queues or
normalizingh(n) andg(n) properly before addition), and
omitted here. Note that if we seth(n) = 0, then BF* algo-
rithm degenerates to Dijkstra’s shortest path algorithm.

References

[1] B. Bloom. “Space/Time Tradeoffs in Hash Coding with Al-
lowable Errors”.Comm. ACM, 13(7):422–426, 1970.

[2] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. “Summary
Cache: A Scalable Wide-Area Web Cache Charing Protocol”.
IEEE/ACM Trans. on Networking, 8(3):281–293, 2000.

[3] S. J. Russell and P. Norvig.“Artificial Intelligence: A Modern
Approach (2nd Ed.)”. Prentice-Hall, 2002.

[4] A. Tarski. “A Lattice-Theoretical Fixpoint Theorem and its
Applications”. Pacific J. Math., 5:285–309, 1955.

3

