Algebraic Algorithms to Solve Name Disambiguation Problem

Ingyu Lee!, Byung-Won On?, and Seong No Yoon?
Sorrell College of Business, Troy University, Troy, AL., USA
2Depalrtment of Computer Science, University of British Columbia, Vancouver, BC., Canada
3C0116ge of Business Administration, Savannah State University, Savannah, GA., USA

Abstract— When we are looking for information about a
specific person, we type the name in search engines. Then,
search engines return many web pages which include the
given name strings. However, the resulting web pages are
mixed with related information and unrelated information.
This is called a name disambiguation problem. Current
search engines provide links but do not distinguish related
and unrelated web pages. In this paper, we described our
algorithm to solve a name disambiguation problem using
two linear algebraic approaches: Singular Valued Decompo-
sition (SVD) and Nonnegative Matrix Factorization (NMF).
Experiments show that using NMF algorithm yields the best
performance in terms of precision, recall and Fmeasure,
and applying SVD requires only 10% computation time
compared to traditional K-means algorithm. Our solution
with search engines will provide more precise search results
than traditional search engine services.

Keywords: Data mining, Text mining, Clustering, SVD, NMF

1. Introduction

Internet allows people to work with or to get information
about someone whom we never met before in real life.
Search engines are used to find information about persons we
are interested in. When we are looking for information about
a specific person, we type the name string in search engines.
Then, search engines return many web pages including the
name strings. However, some web pages include the name
string by coincidence but do not contain related information.
Current search engines do not distinguish between web
pages described in the latter. For example, if we are looking
for Tom Mitchell from Carnegie Mellon University, then
we type the name in Google search engine. Google search
engine returns web pages including Tom Mitchell. There are
37 different Tom Mitchell within the first 100 returning web
pages [1]. Only 57 documents hold information about 7om
Mitchell from Carnegie Mellon University and all the other
documents hold information for different Tom Mitchell. We
call this a name disambiguation problem.

One approach to solve the problem is providing web
pages as groups of related information. Since search engines
return many related and unrelated web pages, users might
be mislead by bunch of unrelated web pages. To prevent
this, search engines cluster related web pages and provide
clustered information to users. The latter will reduce chances

that leading users to unrelated web pages. Therefore, clus-
tering algorithms such as K-means, hierarchical clustering
and graph partitioning have been used to solve a name
disambiguation problem [2], [3], [4], [5].

At the same time, linear algebraic approaches have been
used in information retrieval applications [6], [7]. Especially,
Singular Value Decomposition and Nonnegative Matrix Fac-
torization (NMF) are popularly used in text and data mining
applications. When dimensions become large, applying SVD
and NMF could significantly reduce dimension with a slight
loss of original information. In this paper, we applied these
two algorithms to solve a name disambiguation problem
and compared performance with a regular K-means algo-
rithm. Experiments show that SVD reduces clustering time
and NMF improves performance. Our solution with search
engines provide more precise search results than traditional
search engine services with a slight overhead.

The rest of the paper consists of the followings. Linear
algebra algorithmic backgrounds are described in Section
2. Characteristics of a name disambiguation problem and
metrics we are using to measure performance are described
in Section 3. Experimental results with sample data name set
using Singular Value Decomposition (SVD) and Nonnega-
tive Matrix Factorization (NMF) are described in Section 4.
Related researches are described in Section 5. Re-ranking
clustered results are described in Section 6. Concluding
remarks and future plans are followed in Section 7.

2. Linear Algebraic Algorithms

Vector Space Model (VSM) has been used in information
retrieval applications to represent text documents [6], [7].
Assume we have n documents corpus and we want to repre-
sent each document using m terminologies. Then, we make
n textual documents into n document vectors dy,ds, ..., d,
where each document vector has m terminologies. There-
fore, the term-by-document matrix A is represented as

where columns are document vectors and rows are termi-
nologies as shown in Figure 1.

To retrieve relevant information from this term-document
matrix, we create query vector ¢ and find the document d
which is the closest to a query ¢. Euclidean distance or
cosine similarity are used to measure distances between a

dI 42 duimsmncummnnddi

Taan

A

nxm

Fig. 1: Term-Document Matrix

query g and a document d defined as

Eucliean_Distance(d, q) = Z (dp — qk)2 2)
k=1,....m
and Ty
cosf= L2 (3
[lall2lldl]
, respectively.

2.1 K-means Clustering

Assume we have a m x n term-document matrix A whose
m rows represent terminologies and n columns represent
documents as defined in the previous section. We wish to
cluster n documents into k disjoint clusters Cq,...,Cjk.
Then, the objective function of K-means algorithm is defined

as
min z Z (d; —m;)?)

i=1,...,kd;eC;

where d; is a document column set from A and m; is a
centroid of cluster C; for i =1,..., k.
K-means algorithm works the following way.

1) Choose random k cluster centers (centroid) m;,j =

1,...,k from column set of document vectors.

2) Assign each document column to the closest clusters
Cj,j = 1,...,k using Euclidean distance or cosine
similarity as defined in the previous section.

3) Compute new centroid, m;,j = 1,...,k which are
means of all points in C; defined as

1
m; = &N dod 5)
I=1,...,|Cy]

4) Repeat until changes in clusters C' happen.

K-means algorithm is the most popular to cluster data sets
because of its simplicity. In addition, the quality of K-means
algorithm is known as good for general clustering problems.
However, the convergence of the algorithm depends on initial
centroid selection. If initial centroid is located far from the

Term Document
Vectors k Vectors
§ K
.
k .
- .
b2
A u ve
k

MxN MxR RxR RxN

Fig. 2: Singular Value Decomposition

true solution set, then K-means requires lots of iteration to
converge. Details of K-means and variants algorithms are
found in [8], [9].

2.2 Singular Value Decomposition

Singular value decomposition (SVD) has been used to
solve linear least squares problems, matrix rank estimation,
and correlation analysis [6], [10], [11]. Given a m X n matrix
A, where m > n, the singular value decomposition of matrix
A is defined as

A=UxvT (6)

where U and V are orthogonal matrices which satisfy
UTU = VTV = I, and ¥ is a diagonal matrix whose
diagonal elements are diag(o1,...,0,).

If we have a term-document matrix A whose columns
represent documents holding the terminology on each row,
then matrix A is generally large and sparse in real appli-
cations. Applying K-means on this large and sparse matrix
A requires lots of time and memory space. To overcome
the latter, SVD has been used to represent documents with
reduced number of terminologies which best represents the
original matrix A.

Dimension reduced matrix Ay, is noted as

Ay = UpSp ViE (7

where Uy, and V}, are orthogonal matrices on reduced dimen-
sion, and Y is a diagonal matrix with k singular values.
In the reduced domain, Vj, represents the projection of the
documents into k terminology spaces. Figure 2 shows the
outline result of SVD factorization. Matrix A is factorized
into three matrices. Columns of the leftmost matrix U are
basis vectors for terminology and columns of the rightmost
matrix V' represent documents with a combination of basis
vectors. The diagonal matrix value represents scaling factors
of each basis vector. Matrix V is a projection of our matrix A
in terms of terminologies we selected as shown in Figure 2.

Basis Weight

H,

A W,

MxN Mx K KxN

Fig. 3: Nonnegative Matrix Factorization

Using Ay, in place of A improves performance by reducing
dimension. Ay, considers only essential components of term-
by-document matrices. It also filters out the noise, and uses
best rank-£ approximation. The drawbacks are U}, and V, are
completely dense matrices which requires (m-+n)k memory
space. Furthermore, truncation point & is hard to determine,
and interpretation of basis vectors u; and v; is difficult due
to mixed signs. Details of algorithms and characteristics are
described in [6], [10], [11].

2.3 Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) has been used
in data mining applications [12], [13] since negative values
in SVD matrices are hard to understand the meaning. Un-
like SVD factorization, Non-negative Matrix Factorizations
(NMF) uses low-rank approximation with nonnegative fac-
tors. The following shows the outline of NMF algorithm.

Ay = Wi Hjy, ®)

where columns of W are the underlying basis vectors (i.e.
each n column of A can be built from & columns of W) and
columns of H give the weights associated with each basis
vector such as

Arer = Wi H,q = [wy] hiy + [we] oy + -+ - + [wg] k1 (9)

where w; is a basis and hj; is a contribution weight for
each basis w;,j = 1,--- , k. The outline of the algorithm is
shown in Figure 3.

Since w;s are not orthogonal, basis vectors could overlap
topics. Unlike SVD, W and H can also be restricted as
sparse matrices. The value w;; means the contribution of
term j in basis vector w;. The value h;; shows how much
doc, is pointing in the direction of topic vector w;. Since W
and H are not unique, there are several different algorithms
to factorize into W and H.

Lee and Seung applied NMF algorithm to image process-
ing applications in [14], [15]. Berry used NMF algorithms

function [W, H] = NMF(A)
% initialize nonnegative random matrix, W
W = abs(randn(m,k));
% initialize nonnegative random matrix, H
H = abs(randn(k,n));
for i=1 to maxiter do
% Solve for H
H=W'xW +eye(k). x \) (WT x A);
% Keep positive only
H=H.x(H>=0);
% Solve for W
WT = (H x HT + eye(k). * \) (H x AT);
% Keep positive only
W =W.x (W >=0);
end for

Fig. 4: Nonnegative Matrix Factorization

with sparse constraints on matrix H in his paper [12],
[13], and Paatero and Tapper proposed an alternative least
squares NMF algorithm which is known as faster and
simpler in their paper [16]. NMF has great interpretability,
and comparable performance to SVD. Furthermore, sparsity
constraints during factorization also allow significant storage
savings. It is also scalable and possibly faster than SVD
in parallel environments. However, the factorization is not
unique and depends on algorithms and parameters. When
a new dimension is added, it is unable to reduce the size
of the basis without recomputing NMF. Figure 4 shows an
alternative least squares NMF algorithm we used in this
paper. In the algorithm, A is a sparse constraints factor for
matrix H.

3. Problem Settings and Metrics

For the evaluation of our algorithms, we used name data
set from Bekkerman [1]. It has twelve personal names and
each name set has different number of categories. Table 1
and Figure 5 shows the statistics of our dataset. Table 1
shows that each name set has variants number of categories.
For Adam Cheyer and Leslie Pack Kaebling has 2 categories
but Tom Mitchell has 37 different categories. In Figure 5,
each color represent different clusters and sizes of bar
show the number of documents belong to each cluster. The
naming data set is extremely skewed in terms of cluster size.
For Adam Cheyer and Leslie Park Kaebling, all documents
except one document belong to the same class. Others such
as Andrew Ng and Voss, one or two classes dominate the
whole data set. This skewed characteristic makes it difficult
to use traditional clustering algorithm.

The first step for experiments is building term-document
matrix A from the name data set. We used TMG [17]
software to generate the term-document matrix with normal-
ization and stemming options. We also removed common
words from the term lists. We used term frequency for

Name | Pages | Categories

Adam Cheyer 97 2
William Cohen 88 10
Steve Hardt 81 6

David Israel 92 19
Leslie Pack Kaebling 89 2
Bill Mark 94 8

Andrew McCallum 94 16
Tom Mitchell 92 37
David Mulford 94 13
Andrew Ng 87 31
Fernando Pereira 88 19
Lynn Voss 89 26

Total 1085 187

Table 1: Dataset Statistics. Each name has different number
of documents and different number of categories.

Total Number of Documents

Fig. 5: Statistics of Problem Set: Name sets are extremely
skewed and one class dominates the whole document set.

local term weighting and inverse document frequency for
global term weighting, respectively. Each nonzero elements
in A(7,7) is defined as

A(Z,j) = TFiJ‘ X IDFLJ' (10)

where T'F' is term frequency and I DF is inverse document
frequency. We also normalized each column of A. After
built term-document matrix A, we used Singular Value
Decomposition (SVD) and Nonnegative Matrix Factorization
(NMF) to reduce dimensions and project web documents on
the reduced terminology space.

The first metric we considered is the accuracy of clustering
algorithm. We defined the precision, recall and Fmeasure as

in equations

CorrectlyPredict;
Precision; = 11
recision Predict, (11)
tiyPredict;
Recall, — CorrectlyPredic (12)
Cluster;
Feasure — 2 X Precision x Recall (13)

Precision + Recall

where Predict; is the results of clustering algorithm and
Cluster; is a manually generated solution set. Precision
is defined as the number of correctly clustered documents
divided by the number of documents in the cluster. Recall
is defined as the number of correctly clustered documents
divided by the number documents in manually generated
solution set. Fmeasure is an arithmetic mean of precision
and recall.

Since the original name set is extremely skewed, the
precision and recall could be high even quality of clustering
results is not good. For example, Cheyer, one class has 95
documents out of 96 documents and the second class has
only / document. The precision is 99% no matter which
clustering algorithms are used. To distinguish performance
between clustering algorithms, we also applied RAND index
which has been used in statistics community to compare
two clustering results [18]. Given a set of n documents
D = {di,...,d,}, we wish to compare two clusters: C
and S. The resulting cluster of our algorithm is defined as
C = {Cy,...,C;} and manually derived solution set is
defined as cluster S = {Si,...,Sk}. Then, RAND index
is defined as

a+b

RAND_a+b+c+d (14)
where a is the number of pairs of elements in D that are in
the same set in C' and the same set in .S, b is the number of
pairs of elements in D that are in different sets in C' and in
different sets in S, ¢ is the number of pairs of elements in D
that are in the same set in C' and in different sets in S, and d
is the number of pairs of elements in D that are in different
sets in C' and in different sets in .S. Intuitively, @ + b is the
number of agreements between C' and S, and ¢ + d is the
number of disagreements between C' and S. RAND index
has a value between 0 and 1 with 0 indicating that two data
clusters do not agree on any pair of points and 1 indicating
that the data clusters are exactly the same.

4. Experimental results

K-means algorithm use centroids and medois. Centroid is
a computed center as defined in the previous chapter and
medoid is a member of cluster which is closest to the com-
puted centroid. Using medoids is known as more efficient
than using centroids [19]. Figure 6 shows the performance
of two methods. We averaged results of /00 experiments
for each name data set. The x-axis shows different metrics

I cheyer
I cohen
I hardt
I israel
kaebling
mccallum b
mitchell
mulford
ng 1
I pereira
I oss

w/ centroid
w/ medoids

Accumulated Values

RandIndex Time

Precision Recall Fmeasure

Fig. 6: Performance of two different approach: centroids vs.
medoids.

I cheyer
I cohen T T
I hardt Kmeans SVDk=2 K=8
I israel

s,
kaebling ¢ /]
mecallum

mitchell]
mulford

ng 1

I pereira

2

I voss

Accumulated Values

Fmeasure Randindex Time

Precision Recall

Fig. 7: Performance results of K-means after dimension
reduction.

and the y-axis are accumulated value of all name sets.
Two methods show similar performance in Fmeasure but
using centroids shows a little bit better performance in
Rand index. However, using medoids converges faster than
using centroids. In this paper, we used medoids in our K-
means clustering algorithm rather than using centroids since
it shows similar Fmeasure with less computation time.
Figure 7 shows the performance comparison of K-means
algorithm and K-means on reduced matrix when we use
k=2,4,8,12. We experimented 100 times and computed
averages for each name data set. We achieved 90% of
performance in terms of Fmeasure and Rand index with

— T
I cheyer
I cohen
F I hardt
I israel
kaebling
S mccallum g
mitchell
mulford
ng §

I pereira
I voss I I

KMeans NMF

Accumulated Values
T

Fmeasure Randindex Time

Precision Recall

Fig. 8: Performance results of K-means and NMF.

10% execution time when we use k=2. Bigger k values
improve performance slightly better but require more time
to converge. The experimental results show that only several
principal terminologies are enough to define documents in
name data sets.

To measure NMF clustering algorithm, we used an al-
ternative updating algorithm as shown in Figure 4 with
A value 0.02. The factorization iteration stops when the
difference between the previous norm of H and the current
norm of H is smaller than 0.01. After factorizing the matrix
A into WH, we searched the biggest component from
column vector H;. Then, we assign the document with the
biggest component cluster. Figure 8 shows the results of
comparing performance of two methods. Using NMF shows
slightly better performance in terms of precision, recall and
Fmeasure but K-means shows better performance in Rand
index and time. Considering the size of testing data set is
small and using sparse matrix format for term-document
matrix, K-means shows faster performance is not surprising.

To compare SVD and NMF with the same k dimension
number, we applied K-means algorithm after reducing di-
mension to m X k with SVD and compared the results
with NMF algorithm. The results are shown in Figure 9.
NMF shows slightly better performance in precision, recall,
Fmeasure and Rand index. It also much faster than SVD
to converge. In addition, considering parallelizing SVD is
much harder than NMF, our experiments show that NMF
is a better choice if we are using the same k value. If data
sets are large in parallel environment, NMF is the better
algorithm but SVD with lower k gives benefits in execution
time.

Experiments show that extremely skewed name data
sets are hard to cluster using regular clustering algorithm.
However, SVD could help in reducing dimensions with a

I cheyer

I cohen

I hardt

I israel
kaebling
mccallum
mitchell
mulford
ng

I pereira
I I voss

SVD NMF

Accumulated Values

Fmeasure Randindex Time

Precision Recall

Fig. 9: Performance results SVD with K-means and NMF.

little loss of quality and NMF shows the best performance.
Therefore, for time limited applications, applying SVD is
helpful but NMF algorithm generates a better performance
in general. Especially, considering parallelizing NMF is
relatively easier than SVD, NMF is the algorithm in parallel
environment.

5. Related Work

Bekkerman et. al. proposed two algorithms to disam-
biguate web appearances of people in a social network in
their paper [3]. One is based on link structure of web pages,
another using multi-way distributional clustering method.
Their algorithms show more than 20% improvement in
Fmeasure. Minkov et. al. used lazy graph walk algorithm to
disambiguate names in email documents in their paper [4].
They provided a framework for email data, where content,
social networks and a timeline to integrated in a structured
graph. Banerjee et. al. proposed multi-way clustering on
relation graphs in [2]. Different types of entities are simulta-
neously clustered based not only on their intrinsic attribute
values, but also on multiple relations between entities. On
and Lee used multi-level graph partitioning methods to
provide a scalable name disambiguation solution in their
paper [5].

In authors awareness, this is the first paper to provide
an algebraic approach in a solving name disambiguation
problem. In addition, we analyzed the name disambiguation
problem characteristics and used Rand Index to measure the
performance of extremely skewed clustering problem. Our
experiment results show some promising results in choosing
a proper algorithm based on the problem and computational
environments.

6. Discussion

As the results of clustering, relevant web pages are clus-
tered to the same group. For instance, there are four different
people with the same name spellings, shown in Table 2. In
the example, the total number of web pages related to “Tom
Mitchell” is 13, where four web pages (i.e., A, B, C, and
D), three ones (i.e., E, F, and G), five ones (i.e., H, I, J, X,
and Y), and one web page are associated with professor at
CMU, reporter at CNN, musician at Shady record company,
and minister at Kansas city, respectively. Suppose that web
pages are ranked by PageRank scores like the third column
in Table 2. The current search result of Google is A, E, J,
F G, L H D, Y, B, X, C, and Z. These /13 web pages are
clustered to four groups in terms of our clustering scheme,
and furthermore we need to re-arrange the four groups in a
certain order (like PageRank). Let us denote this process as
re-ranking of clusters.

This is a considerably challenging issue in this paper.
For instance, note the four web pages of “Tom Mitchell”
at CMU. Web page A is firstly ranked by Google PageRank
algorithm, while the rest pages are mostly located in bottom
- B (10t"), C (12t"), and D (8'"). In this case, it is
hard to determine which position the cluster (labeled as
CMU/Prof) should be rank among the four clusters (labeled
as CMU/Prof, CNN/Rep, Shaddy/Mus, and Kansas/Min). To
address this problem, we propose an approach based on the
hypothesis that re-using ranking information generated by
Google is sufficiently effective. For this, we consider four
different methods as follows:

o Consider relative ranking positions of web pages per
cluster which is defined as

ZiEC'lusterj PageRanki/NdOC

Cluster Rank; = N
cluster;

15)
where Cluster; is the number of pages in cluster j and
Ngoe is the total number of pages. For example, take
a look at the cluster, named as “CMU/Prof”. We can
compute the cluster ranking by

Pa.gengnk(A)+Pagz:1?1.%nk(B)ZPagcR;gnk(C)+Pagﬁl:1;a3nk(D)
_ ittty

_ (0.0840.7740.9240.62) _ 2.39 _
= 1 =22 =06

That is, Cluster Rank(CMU/Prof) = 0.6. Finally,
the clusters are re-ordered by the ClusterRank()
scores in the ascending order.

o Consider the highest ranking position of web pages per
cluster which is defined as

Cluster Rank; = min PageRank;. (16)
i€Cluster;

For instance, the cluster of “CMU/Prof” is ranked in the

first position due to the ranking position of A. In other

words, Cluster Rank(CMU/Prof) = 1. Finally, the

Cluster Label Web Page ID | PageRank
Tom Mitchell A 1
Professor B 10
CMU C 12
D 8
Tom Mitchell E 2
Reporter F 4
CNN G 5
Tom Mitchell H 7
Musician 1 6
Shady Records J 3
X 11
Y 9
Tom Mitchell 7 13

Minister
Kansas City

Table 2: An example of re-ranking in our context.

clusters are re-ordered by the Cluster Rank() scores
in the ascending order.

o Consider the Top-k ranking positions of web pages per
cluster which is defined as

ZTOpKEClusterj Pa‘geRanktOpk /Ndoc

Cluster Rank; =
r a7

where TopK is the highest k£ rank values in cluster
j. For instance, the cluster of “CMU/Prof” has top-2,
PageRank(A) and PageRank(D). Then,
PageRank(A) PageRank(D)
. + 5
2

0.08 + 0.62
= % = 0.35.

Finally, the clusters are re-ordered by the
Cluster Rank() scores in the ascending order.

o Consider the median ranking position of web pages per
cluster which is defined as

Cluster Rank; =

Cluster Rank; = median{Cluster;} (18)

As an example, Cluster Rank(Shaby/Mus) = 7
due to PageRank(J) = 3, PageRank(I) = 6,
PageRank(H) = 7, PageRank(Y) = 9, and
PageRank(X) = 10. Finally, the clusters are re-
ordered by the Cluster Rank() scores in the ascending
order.

7. Concluding Remarks

In this paper, we characterized and analyzed a name dis-
ambiguation problem. We also applied algebraic approaches
to solve a name disambiguation problem using SVD and
NMF algorithms. Using SVD showed drastic improvement
in terms of execution time. It requires only /0% of execution
time if we are using smaller number of k. Using NMF
shows a little bit better performance in terms of precision,
recall, Fmeasure and Rand Index. Considering that NMF is
relatively easier to parallelize than other algorithms, NMF is

an algorithm to use in parallel environment with large name
data sets.

Current implementation is based on a single machine
and it could not handle huge number of data sets. In the
future, we are considering to implement our algorithms,
especially NMF algorithm, on a clustered system to handle
large number of data sets. In addition, several variation
metrics are needed to measure performance of extremely
skewed clustering problem. We are trying to provide better
quality metrics for a name disambiguation problem. We also
proposed several re-ranking algorithms of clustered results.
However, we are still working on the details of several re-
ranking algorithms.

References

[1] R. Bekkerman, “Name data set,” http://www.cs.umass.edu/ ronb.

[2] A. Banerjee, S. Basu, and S. Merugu, “Multi-way clustering on
relation graphs,” in Proceedings of SIAM Data Mining 2007, 2007.

[3] R. Bekkerman and A. McCallum, “Disambiguating web appearances
of people in a social network,” in Proceedings of International World
Wide Web Conference Committee, 2005.

[4] E. Monkov, W. Cohen, and A. Y. Ng., “Contextual search and name
disambiguation in email using graphs,” in Proceedings of SIGIR, 2006.

[5] B. On and D. Lee, “Scalable name disambiguation using multi-level
graph partition,” in Proceedings of SIAM Data Minings, 2006.

[6] M. Berry and M. Browne, Understanding Search Engines. SIAM,
2005.

[71 M. Berry, S. Dumais, and G. OBrien, “Using linear algebra for
intelligent information retrieval,” SIAM Review, vol. 37, pp. 573 —
595, 1995.

[8] J. Han, M. Kamber, and A. Tung, Spatial clustering methods in
data mining: A survey. In Geographic Data Mining and Knowledge
Discovery. Taylor and Francis, 2001.

[9] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the Fifth Berkeley Sympositum
on Mathematical Statistics and Probability, 1967.

[10] G. Golub and C. V. Loan, Matrix Computations, 3rd ed. Baltimore,
MBD: Johns Hopkins University Press, 1996.

[11] M. Heath, Scientific Computing: An Introductory Survey. New York:
McGraw Hill, 2002.

[12] M. Berry, M. Browne, A. Langville, V. Pauca, and R. Plemmons,
“Algorithms and applications for approximate nonnegative matrix
factorization,” Computational Statistics and Data Analysis, vol. 52,
pp.- 155 — 173, 2007.

[13] F Shahnaz, M. Berry, V. Pauca, and R. Plemmons, “Document cluster-
ing using nonnegative matrix factorization,” Information Processing
and Management: an International Journal, vol. 42, pp. 373-386,
2006.

[14] D. Lee and H. Seung, “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, pp. 788 — 791, 1999.

[15] ——, “Algorithms for non-negative matrix factorization,” in NIPS,
2000.

[16] P. Paatero and U. Tapper, “A non-negative factor model with optimal
utilization of error estimates of data values.” Environmetrics, vol. 5,
pp. 111-126, 2006.

[17] D. Zeimpekis and E. Gallopoulos, TMG: A MATLAB toolbox for
generating term document matrices from text collections, 2006.

[18] W. M. Rand, “Objective criteria for the evaluation of clustering
methods,” Journal of the American Statistical Association, vol. 66,
pp. 846-850, 1971.

[19] L. Kaufman and P. Rousseeuw, Finding Groups in Data: An Intro-
duction to Cluster Analysis. Wiley, 1990.

