
Social Network Analysis on Name Disambiguation and More

Byung-Won On

Department of Computer Science

The University of British Columbia

bwon@cs.ubc.ca

Abstract

Name variants are ubiquitous in real world due to ty-
pographical errors (e.g., “Forschungszentrum JUlich” vs.
“Forschungszentrum Julich”), abbreviated, imcomplete, or
missing information (e.g., “R. E. Ellis” vs. “Randy E. El-
lis”), lack of standard name formatting convention (e.g.,
“Spike Jonze” vs. “Jones, Spike”), and their combinations.
In this paper, we project this name disambiguation problem
to graph representation, and then analyze graphs using so-
cial network analysis. In particular, we used real duplicate
name entities that we manually verified from ACM digital
library. Then, using various string similarity metrics and
additional information (i.e., co-author names, titles, and
veneus), we analyze the effectiveness of string similarity
metrics and additional information based on social network
analysis. Through our experimental validation, name dis-
ambiguation problem can be analyzed in graphical, visual
manner.

1 Introduction

Since a person name can exhibit multiple variants in real
world, searching for a person name is considerably chal-
lenging in bibliographic digital libraries and yellowpages.
The name search problem is a specialized problem of En-
tity Resolution (ER) in database and data mining commu-
nities. If users, searching for a name, enter a variant not
matched representative names indexed in the system, they
may obtainincorrectsearch results. To avoid this problem,
systems, as a pre-processing step, regularly peformname
disambiguation processfrom the crawled data. In order to
demonstrate the need for a solution to the name disambigua-
tion task, let us present the following real case drawn from
the ACM Portal.

Example 1. Figure 1 is a screen shot of the ACM Por-
tal, which contains the list of author names who have ever

published an article in ACM-affiliated conferences or jour-
nals. In particular, Figure 1 shows author names whose
last names are either “Ullman” or “Ullmann”. Note that
the name of the renowned computer scientist, “Jeffrey D.
Ullman” at Stanford University, appears as ten variants,in-
correctly. For instance, “J. D. Ullman” in the list is in fact
the same person as “Jeffrey D. Ullman”, however they are
treated as different scholars. In such a case, users search-
ing for all the articles of “Jeffrey D. Ullman” will get only
citations of “Jeffrey D. Ullman”. Any bibliometrical study
would underestimate the impact of the author “Jeffrey D.
Ullman”, splitting his fare share into ten variants incor-
rectly.

As the solution, to identify variant names, we treat addi-
tional information (i.e., co-author names, titles, and venues)
related to an author name as a “string”, and measure all pair-
wise string similarities using a certain similarity function. If
sim(x, y) ≥ θ, x andy are name variants. Then, we gen-
erate a duplicate entity graph with variants identified by our
approach. Note that such a duplicate entity graph is a se-
mantic graph. That is, the graph is not formedsyntatically
by name spellings but rathersemanticallyby the similarities
of pair-wise nodes.

In this paper, we project name disambiguation problem
to graph representation. Then, we strive to analyze the du-
plicate entity graph using social network analysis that pro-
vides effective methods for analyzing semantic graphs in
order to figure out name disambiguation problem in graph-
ical and visual flavor. For details, if two nodes are con-
nected to each other in the duplicate entity graph, they are
likely to be variant names. Observing the topological fea-
tures (i.e., degree, distance, betweenness, and clustering co-
efficient distribution) of the graph, we can be aware of name
disambiguation problem more precisely. That is, investigate
if the graph is random, regular, scale-free, or small world
network. Note that there exist on average 3 variant names
in our data set that we manually collected from ACM dig-
ital library. Therefore, we have our own point of view that

1

8 variants
under “Ullman”

2 variants
under “Ullmann”

Figure 1. Screen-shot of author index for
“Ull*” in the ACM Portal. Note that the ci-
tations of “Jeffrey D. Ullman” appear as eight
variants under “Ullman” and two variants un-
der “Ullmann.”

if a string similarity method finds variant names well, the
duplicate entity graph should show the topological features
of random graphs. Otherwise, for instance, if it is a scale-
free network, the used similarity metric and context infor-
mation are not effective to identify redundant entities. In
addition, we further examine that the duplicate entity graph
is affected by different types of string similarity measures
as well as by different attributes.

This paper is organized as follows. Section 2 briefly in-
troduces the overview of problem definition, solution, and
related work. Section 3 describes our name disambiguation
analysis framework. Section 4 reports our experimental set-
up and results. Finally, Section 5 concludes and discusses
our future work.

2 Preliminaries

2.1 Name Matching Problem Definition

We formally define theName Matchingproblem – Given
two long lists of entities (i.e., author names),X andY , for
each entityx (∈ X), find a set of entities,y1, y2, ..., yn

(∈ Y) such that bothx andyi (0 ≤ i ≤ n) are variants of
the same entity. The solution is to treat additional informa-
tion (e.g., titles) of an author name spellings as a “string”,
and perform all pair-wise string similarities using a certain
similarity function. If sim(x, y) ≥ θ, x andy are name

variants.

2.2 Related Work

2.2.1 String Similarity Metrics

As a main solution to the name matching task, various string
similarity metrics have been used to effectively identify du-
plicates refering to the same name entity in the context that
string distance measures are most useful for matching prob-
lems with little prior knowledge or unstructured data [4].
To address the name matching task, various string similarity
metrics have been proposed, and by and large, string simi-
larity metrics are categorized into four classes as follows:

• Character-based Similarity Metrics relies on char-
acter comparison to handle typographical variations.
Edit Distance [13, 12, 15, 19], Affine Gap Dis-
tance [23, 3, 19], Smith-Waterman Distance [22], and
Jaro [10] are such similarity metrics. Given two strings
s1 ands2, Edit Distance estimates the minimum num-
ber of edit operations to transforms1 into s2, where
three types of edit operations arecharacter insertion,
deletion, andsubstitution.

• Token-based Similarity Metrics. As a main error
type of strings, string tokens are often rearranged. For
instance, “John Smith” versus “Smith, John”. In such
case, edit distance metrics are not the effective method
to identify the duplicates. On the other hand, using
multisets of words of two strings, token-based similar-
ity metrics, such as Jaccard, Monge-Elkan [14], and n-
grams with TF/IDF [7], work well for alternated string
tokens.

• Phonetic Similarity Metrics are designed to ad-
dress redundant cases that the representation of two
strings (e.g., “Cajun” versus “Kageonne”) are differ-
ent while they are phonetically similar each other.
First, Soundex [20, 21] retains the mapping informa-
tion to assign character alphabets to phonetically sim-
ilar groups of consonants. Moreover, the NYSIIS
system and Oxford Name Compression Algorithm
(ONCA) [6] take the position of vowels into account.
As a better method than Soundex, Metaphone [17] and
Double Metaphone [18] use 16 consonant sounds to
cover many English and non-English words.

• Numeric Similarity Metrics. Rather than strings, this
problem is to detect numbers, treated as strings, with
similar values. Koudas et al. [11] consider the distri-
bution and type of the numeric data. Agrawal et al. [1]
extend concept of cosine similarity for numeric data.

Discussion. Both phonetic and numeric similarity ap-
proaches are not related to our name matching problem.

2

Thus, we do not take such similarity measures into account
in this paper.

Furthermore, on the task of matching name entities, no
string similarity metric provides concrete accuracy in a va-
riety of data. For instance, Edit distance method works ef-
fectively for capturing spelling errors or insertions and dele-
tions of short words. For instance, as for two author names
“R. Agrawal”and “R. Agrrawal”, the edit distance= 1.
On the other hand, edit distance metrics do not work well
when the compared names include variations of words or-
der or insertions and deletions of long words. For example,
“R. Agrawal” versus “Agrawal, Rakesh”. Similarly, token-
based similarity metrics have the strong point in compar-
ing strings that contain insertions and deletions of common
words or variations of word order. However, such methods
can mismatch duplicates with spelling errors, compared to
edit distance functions [7]. Thus, we use effective methods
in both character and token-based similarity metrics.

3 Our Name Disambiguation Analysis
Framework

First, we apply a string similarity measure to our input
data, and then we will obtain redundant name entities. Next,
we represent the redundant data as a duplicate entity graph.
As a final, comparatively examine theoretical descriptions
of the relationships in the duplicate entity graph.

3.1 Graph Formation

Given a list of name entities as an input, to obtain du-
plicate entities, apply a string similarity measure, such
as Jaccard or Cosine similarity, to all pairs of name
entities to see if each pair of name entities is identi-
cial. For instance, given two author names “Jeff Ullman”
and “Peter Ullman”,simJaccard(context(“Jeff Ullman”),
context(“Peter Ullman”)) = 0.33. Since thesimJaccard

value< θ(= 0.6), whereθ is the pre-determined threshold
value. We consider that the two names are different. Thus,
the edge between “Jeff Ullman” and “Peter Ullman” is not
created in the duplicate entity graph.

3.2 String Similarity Methods

In this scheme, the similarity between two author names
are measured by the “similarity” between their context in-
formation. In our framework,context informationis cita-
tions. In particular, each citation consists of three sets of
attributes: (1) co-authors (2) titles (3) venues. That is, to
measure the similarity between “John Smith” and “Smith,
J.”, instead of computing thesim(“John Smith”, “Smith,
J.”), we compute thesim(co-authors(“John Smith”), co-
authors(“Smith, J.”)).

Name Description
x, y co-author names
Tx all tokens of the co-authorx
Cx all characters ofx

CCx,y all characters inx common withy
Xx,y # of transpositions of char. inx relative toy

Table 1. Terms in a set of co-authors.

3.2.1 Jaccard

Among many possible token-based similarity measures, we
used Jaccard similarity that were reported to give a good
performance for the general name matching problem in [4].
We briefly describe the metric below. Using the terms of
Table 1, the metric can be defined as follows:

• Jaccard(x,y) = |Tx

⋂
Ty|

|Tx

⋃
Ty| ;

3.2.2 Edit distance

Given two namesn1 andn2, edit distance is the cost of best
sequence of edit operations that convertn1 to n2. Typical
edit operations are character insertion, deletion, and substi-
tution, and each operation must be assigned a cost. For our
experiment, we make use of Levenshtein distance [5].

3.2.3 Cosine Similarity

In this approach, instead of using string similarity, we use
vector similarities to measure the similarity of the context
information. We model a set of attribute (e.g., co-author
names) as vectors in the vector space, each dimension of
which corresponds to a unique author name appearing in
the citations in the block. For example, suppose we have a
block that has three groups of citations, one for “D. Lee”,
another for “D. W. Lee” and the other for “D. Y. Lee”. In the
first group, suppose we have five papers, each coauthored
by “D. Lee” with one or more of “J. Kang”, “P. Mitra”, and
“T. Han”. Further suppose among the five papers “D. Lee”
coauthored three times with “J. Kang”, four times with “P.
Mitra”, and once with “T. Han”. Similarly, suppose we have
10 papers in the second group, in which “D. W. Lee” coau-
thored five times with “J. Kang”, seven time with “P. Mitra”,
and three times with “W. Chu”. In the last group, supposed
we have seven papers in which “D. Y. Lee” coauthor red
three times with “P. Chopra”, five times with “J. Xu”, and
once with “J. Kang”.

The total number of unique coauthor names in the block
is 6 except the three “D. Lee” name variants. In order to
determine if the three name variants are indeed referring to
the same person, we model the the coauthor information for
each variant as a vector and compute the distances between
the vectors. The resulting vectors have 12 dimensions, each

3

of which corresponds to one of 6 unique coauthor names
appearing in the block. For example, for the first group
of citations for “D. Lee”, we have a vector v(“D. Lee”) =
[0 0 1 3 4 0], provided that the dimensions are ordered by
coauthors’ last name and values in the vector represent the
number of papers that the author represented by the dimen-
sion coauthored with “D. Lee”. For example, the value, 1, in
the third dimension represents the number of papers that “T.
Han” coauthored with “D. Lee”. Similarly, we have v(“D.
W. Lee”) = [0 3 0 5 7 0] and v(“D. Y. Lee”) = [3 0 0 1 0
5]. In order to measure the similarity between the vectors,
v andw, we use the simple cosine similarity, an angle be-
tween two vectors, defined as:cos θ = cc·ac

‖cc‖·‖ac‖ . In the
same procedure, we can measure Cosine similarity using
titles and venues.

3.3 Analyzing Duplicate Entity Graph

To identify variant names and create the duplicate en-
tity graph, a string similarity metric uses contex information
based on the hypothesis that if two author names are identi-
cal, they will share more number of common tokens in their
co-author names and titles/venues. If two nodes are con-
nected to each other in the graph, they are likely to be name
variants. By observing the topological features (i.e., degree,
distance, betweenness, and clustering coefficient distribu-
tion) of the graph, we can be aware of name disambigua-
tion problem more precisely. In other words, investigate if
the graph is random, regular, scale-free, or small world net-
work. Note that there exist on average 3 variant names in
our data set that we manually collected from ACM digital
library. Thus, we have our own point of view that if a string
similarity method finds variant names well, the duplicate
entity graph should show the topological features of random
graphs. Otherwise, for instance, if it is a scale-free network,
the used similarity metric and context information are not
effective to identify redundant entities. In addition, we fur-
ther examine that the duplicate entity graph is affected by
different types of string similarity measures as well as by
different attributes. The definitions of measuring topologi-
cal features in the duplicate entity graph are as follows:

• Degree: The fraction of nodes of which each haski =
ki

N , where1 ≤ i ≤ N andki is # of degrees of nodei.

• Distance (GD): Given any pair of nodes in the du-
plicate entity graph,geodesicof the pair denotes the
shortest path between them, and the geodesic distance
is the minimum number of edges in the path.. Then,
the average distance is the average of all pair-wise
geodesic distances of nodes in a graph.

• Betweenness: The betweenness of a nodev is
measured by

∑
x,y,v∈G

d(x,y;v)
d(x,y) , where d(x, y) is a

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

of degrees

of

 n
od

es

Figure 2. Digree distribution.

geodesic betweenx andy, andd(x, y; v) is a geodesic
betweenx andy passing throughv. As the between-
ness of a nodev is high,v is considered as the central
person in the community.

• Clustering coefficient(CC): Given a nodev, let Γ(v)
be the neighbors ofv, andE(Γ(v)) be the edges of
nodes inΓ(v). Then, the clustering coefficient ofv is

2·|E(Γ(v))|
(|Γ(v)|)(|(Γ(v))|−1) . In this case, the clustering coeffi-
cient of a graphG is the average clustering coefficient
of all nodes inG, measuring how many edges actually
occur, compared to the fully connected graph.

4 Experimental Validation

5 Set-Up

For our experiment, we used 128 “real” author names
and their variants, manually collected from ACM Portal.
For example, we manually verify that two author names
“Chong Kwan Un”, “C. K. Un”, and “Chong K. Un” are
the same author name in ACM Digital Library.

The three string similarity metrics were implemented by
SecondString in http://secondstring.sourceforge.net/. For
the input data of each similarity metric, we used co-author
names, titles, and venue tokens as context information. That
is, a set of co-author names of “Alon Y. Halevy”, s set of ti-
tle tokens of “Alon Y. Halevy”, or a set of venue tokens
of “Alon Y. Halevy”. We empirically determined that the
proper threshold valueθ = 0.1, 0.4, or 0.9 for Jaccard, Co-
sine similarity, and Edit distance, respectively.

5.1 Results

In our test data set, the number of author names is 43.
Each author name corresponds to 2.98 name variants. For
instance, an author name entity “Chun Wu Leng” and the

4

name variant “Chun-Wu Leng” exist in our data set. In
the example, we call “Chun Wu Leng” arepresentative
name while “Chun-Wu Leng” avariant name. To deter-
mine which one becomes the representative or variant name,
we randomly select one of them as a representative name,
and the rest as variant names. In case of “Levy”, there are
five split names. However, there are two duplicate names
in most cases. Since a duplicate entity graph consists of 43
representative names and their variants, the total number of
nodes is 128. Figure 5 shows the duplicate entity graph with
128 nodes, which is formed with the output data set gener-
ated by Cosine similarity metric, of which the context infor-
mation isco-authorsandθ = 0.4. Each edge between two
nodesi andj denotes thatj is a variant name ofi. When
we observe the graph in Figure 5, we easily find duplicate
entities. For instance, there is a subgraph of “Levy”, such
as “Alon Halevy”, “Alon Levy”, “Alon Y. Halevy”, “A. Y.
Halevy”, and “Alon Y. Levy”, at the bottom of Figure 5. As
another example, take a look at nodes of “Laks V.S. Laksh-
manan” and “V.S. Lakshmanan”, where the two nodes are
connected each other. In this case, using Cosine similarity
metric, we identify variant names.

Now let us go back to our main point. Note that each
representative name has at most 2 name variants in our
data set. Therefore we argue thatif string similarity met-
rics, such as Jaccard, Cosine similarity, or Edit distance,
identify name variants effectively, a duplicate entity graph
should comprise a lot of forests and show topological prop-
erties of random graphs. To verify our claim, Figure 2 de-
picts the degree distribution of the duplicate entity graph,
which is formed with the output data set generated by Co-
sine similarity metric, of which the context information is
co-authorsandθ = 0.4. Unexpectedly, the figure shows
that the graph is a scale-free network. That is, only a few
nodes have a considerable number of degrees which the
most nodes have a small number of degrees. The distri-
bution of numbers of degrees per node is power-low de-
gree distribution, which is the main topological property of
scale-free networks (e.g., WWW). As a result, a scale-free
property of our duplicate entity graph implies that Cosine
similarity metric does not work to find duplicate entities in
our data set. This is why the graph contains false positive
entities as well as variant names. As for an name entity,
the corresponding false positive entity stands for a redun-
dant entity determined by a certain string similarity metric
but it is not true. According to our manual investigation, the
most false positives are co-authors. For example, suppose
that “J. D. Ullman” is a variant name of “Jeffrey Ullman”
while “Alon Aho” is a co-author name entity (false positive)
of “Jeffrey Ullman”. Cosine similarity(context(“Jeffrey
Ullman”), context(“J. D. Ullman”))=0.8. Cosine similar-
ity(context(“Jeffrey Ullman”), context(“Alon Aho”))=0.8.
If we assume thatθ = 0.6, “J. D. Ullman” and “Alon Aho”

are redundant names of “Jeffrey Ullman”. Thus the node
“Alon Aho” is incident to “Jeffrey Ullman” in the duplicate
entity graph. Consequently, we conclude that many false
positives make a scale-free network and furthermore Co-
sine similarity metric does not find identical author names
effectively.

Moreover, Figure 3 shows topological features of our du-
plicate entity graph. In other words, we measure average
degree, distance distribution, betweenness distribution, and
clustering coefficient distribution of three duplicate entity
graphs formed by Jaccard, Cosine similarity, and Edit dis-
tance. Observing such various features, we become aware
of the effectiveness of three different string similarity meth-
ods. In all figures in Figure 3, Jaccard and Cosine simi-
larity show similar pattern of results. For instance, com-
mon geodesic distance of pairs of nodes in duplicate entity
graphs created by Jaccard and Cosine similarity is 3. On the
other hand, common geodesic distance in the duplicate en-
tity graph formed by Edit distance is 2. This result indicates
that Jaccard and Cosine similarity find redundant entities in
the similar approach. Note that Jaccard works based on set
operations oftokensregarding context information. Simi-
larly, Cosine similarity is to first representtokensof con-
text information as vectors and take the close angle between
vectors.

In particular, Edit distance is significantly different from
the rest similarity metrics in the aspects of all features. For
instance, in the graph of clustering coefficient distribution,
clustering coefficient values of Edit distance are relatively
higher than Jaccard and Cosine similarity. This observation
indicates that many nodes in the duplicate entity graph in
terms of Edit distance are more number of neighbors than
Jaccard and Cosine similarity. That is, each node has many
edges and is connected to false positives. Through this re-
sult, we can know that Edit distance is not effective method,
compared to Jaccard and Cosine similarity. Please note that
Edit distance measures # of character insertion, deletion,
and substitution operations to transform context(“Jeffrey
Ullman”) and context(“J. D. Ullman”). In general, context
information is the long length of string which consists of
co-author name tokens, title tokens, or veneu tokens. As
the length of context information is increased, the number
of operations is increased as well. Hence Edit distance is
the poorest method to find split name entities.

For each string similarity metric, we make use of
three different context information. In other words, con-
text(“Jeffrey Ullman”) can be his co-author names, title to-
kens or venue tokens of “Jeffrey Ullman” citations. To see
the effectiveness of different context information, Figure 4
illustrates the four topological features of the duplicate en-
tity graph in terms of Jaccard withθ = 0.4. In all fea-
tures, using co-authors and titles as context information is
better than venues. For instance, using co-authors and titles

5

is smaller number of degrees than using venues. Through
these results, co-authors and titles are worth as input data for
similarity metrics. In many cases of venue information, the
data is empty and shortened conference or journal names,
say “VLDB” or “ICDE”. This is why venue information is
not good context information for string similarity metrics.

Table 2 summarizes features of the duplicate entity graph
formed by Cosine similarity withθ = 0.4.

6 Conclusion

In this paper, we project name disambiguation problem
to graph representation, and then analyze graphs using so-
cial network analysis. Overall, according to our experimen-
tal results, the three string similarity metrics do not work
effectively due to a scale-free topological feature. Further-
more, Jaccard and Cosine similarity using context informa-
tion of co-authors and title tokens are the best to identify
redundant entities.

As our extended future work, to determine proper thresh-
old values for similarity metrics so to remove false posi-
tives, we can view that clustering coefficients are an effec-
tive method in our experiments. The clustering coefficent
values are proportional to average recalls. If we set toθ a
certain clustering coefficient valueα, where there is a big
gap betweenα andα + 1. In this idea, we need to experi-
ment intensively.

As our another work, we propose how to construct effec-
tive evaluation tools. To improve the quality of data (QoD),
we need the approach to detect duplicate entities and then
consolidate them. However, so far, none focuses on con-
structing a real evaluation tool for QoD. More specifically,
our approach deals with the following two questions:

• Given a database, how can we know if it is really
clean?

• Suppose that the database is so dirty that one of data
cleaning methods is required to use. Then, how can we
know if the method works without any solution set?

As our solution, we construct two graph models of dirty
and clean data. Then, find the properties that clean data
should have unlike dirty data. If such properties are ob-
served in the given data (or the data after a cleaning method
is performed), the data will be clean.

References

[1] R. Agrawal and R. Srikant. “Searching with Numbers ”.

[2] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and
S. Fienberg. “Adaptive Name-Matching in Information In-
tegration”. IEEE Intelligent System, 18(5):16–23, 2003.

[3] M. Bilenko, R.J. Mooney, W.W. Cohen, P. Ravikumar, and
S.E. Fienberg. “Adaptive Name Matching in Information In-
tegration”. IEEE Trans. on Computers.

[4] W. Cohen, P. Ravikumar, and S. Fienberg. “A Comparison of
String Distance Metrics for Name-matching tasks”. InIIWeb
Workshop held in conjunction with IJCAI, 2003.

[5] W. A. Gale and K. W. Church. “A Program for Aligning
Sentences in Bilingual Corpora”.Computational Linguistics,
1993.

[6] L.E. Gill. “OX-LINK: The Oxford Medical Record Linkage
System ”.

[7] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava.
“Text Joins in an RDBMS for Web Data Integration”. In
Int’l World Wide Web Conf. (WWW), 2003.

[8] M. A. Hernandez and S. J. Stolfo. “The Merge/Purge Prob-
lem for Large Databases”. InACM SIGMOD, 1995.

[9] J. A. Hylton. “Identifying and Merging Related Biblio-
graphic Records”. PhD thesis, Dept. of EECS, MIT, 1996.
LCS Technical Report MIT/LCS/TR-678.

[10] M.A. Jaro. “Unimatch: A Record Linkage System: User’s
Manual ”. Technical report, US Bureau of the Census, Wash-
ington, D.C., 1976.

[11] N. Koudas, A. Marathe, and D. Srivastava. “Flexible String
Matching against Large Databases in Practice ”.

[12] G.M. Landau and U. Vishkin. “Fast Parallel and Serial Ap-
proximate String Matching”.

[13] V.I. Levenshtein. “Binary Codes Capable of Correcting
Deletions, Insertions and Reversals”.

[14] A.E. Monge and C.P. Elkan. “The Field Matching Problem:
Alogirthms and Applications ”.

[15] S.B. Needleman and C.D. Wunsch. “A General Method Ap-
plicalicable to the Search for Similarities in the Amino Acid
Sequence of Two Proteins”.

[16] B.W. On, N. Koudas, D. Lee, and D. Srivastava. “Gropu
Linkage ”.

[17] L. Philips. “Hanging on the Metaphone ”.

[18] L. Philips. “The Double Metaphone Search Algorithm ”.

[19] E.S. Ristad and P.N. Yianilos. “Learning String Edit Dis-
tance”. IEEE Trans. on Computers.

[20] R.C. Russell. “U.S. Patent 1,261,167 ”.

[21] R.C. Russell. “U.S. Patent 1,435,663 ”.

[22] T.F. Smith and M.S. Waterman. “Identification of Common
Molecular Subsequences”.

[23] M.S. Waterman, T.F. Smith, and W.A. Beyer. “Some Biolog-
ical Sequence Metrics”.

6

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Average degree

of

 n
od

es

Edit dist
Cosine sim
Jaccard

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7

GD

P(
G

D
)

Edit dist
Cosine sim
Jaccard

(a) Degree distribution (b) Distance distribution

0

0.05

0.1

0.15

0.2

0.25

1 11 21 31 41 51 61 71 81 91 101 111 121

Node ID

B
et

w
ee

ne
ss

Jaccard
Cosine sim
Edit dist

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cc

P(
cc

)

Edit dist
Cosine sim
Jaccard

(c) Betweenness distribution (d) Clustering coefficient distribution

Figure 3. Comparisons of Jaccard, Cosine similarity, and Edit distance.

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Average degree

of

 n
od

es

Co-author
Title
Venue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
CC

P(
C

C
)

Co-author
Title
Venue

(a) Average degree per node (b) Clustering coefficient distribution

Figure 4. Comparisons of co-authors, titles, and venues. Distance and betweenness results show
similar patterns to degree and clustering coefficient distributions. Due to space limitation, we leave
out the results.

7

Figure 5. Screen-shot of a duplicate entity graph of using Pajek.

Network all degree centralization 0.17973
of unreachable pairs 10058

Average distance among reachable pairs 3.02743
The most distance nodes “Quinglong Hu” (23) and “Keith D. Underwood” (37)

Distance 7
Network betweenness centralization 0.10292

Table 2. Summary.

8

